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Summary

The frame problem arises in attempts to formalise problem—solving processes
involving interactions with a complex world. It concerns the difficulty of keeping
track of the consequences of the performance of an action in, or more generally of
the making of some alteration to, a representation of the world. The paper contains
a survey of the problem, showing how it arises in several contexts and relating it to
some traditional problems in philosophical logic. In the second part of the paper
several suggested partial solutions to the problem are outlined and compared. This
comparison necessitates an analysis of what is meant by a representation of a
robot's environment. Different notions of representation give rise to different pro-
posed solutions. It is argued that a theory of causal relationships is a necessity for
any general solution. The significance of this, and the problem in general, for
natural (human and animal) problem solving is discussed, and several desiderata for
efficient representational schemes are outlined.

Introduction

We consider some problems which arise in attempting a logical analy-
sis of the structure of a robot's beliefs.
A robot is an intelligent system equipped with sensory capabilities,

operating in an environment similar to the everyday world inhabited by
human robots.

* University of Edinburgh

By belief is meant any piece of information which is explicitly stored
in the robot's memory. New beliefs are formed by (at least) two dis-
tinct processes: thinking and observation. The former involves opera-
tions which are purely internal to the belief system: the latter involves
interacting with the world, that is, the external environment and, possi-
bly, other aspects of the robot's own structure.

Beliefs will be represented by statements in a formal logical calculus,
called the belief calculus Lb. The process of inferring new assertions
from earlier ones by the rules of inference of the calculus will represent
thinking (McCarthy, 1959, 1963; McCarthy and Hayes, 1969; Green,
1969; Hayes, 1971).
There are convincing reasons why Lb must include Lc — classical

first-order logic. It has often been assumed that a moderately adequate
belief logic can be obtained merely by adding axioms to Lc (a first-
order theory); however I believe that it will certainly be necessary to
add extra rules of inference to Lc, and extra syntactic richness to
handle these extra rules.
One can show that, under very general conditions, logical calculi

obey the extension property: If S p and S C S' then S' p. The
importance of this is that if a belief p is added to a set S, then all
thinking which was legal before, remains legal, so that the robot need
not check it all out again.

Time and Change

For him to think about the real world, the robot's beliefs must
handle time. This has two distinct but related aspects.
(a) There must be beliefs about time. For example, beliefs about

causality.
(b) The robot lives in time: the world changes about him. His beliefs

. must accommodate in a rational way to this change.
Of these, the first has been very extensively investigated both in A.1.

and philosophical logic, while the second has been largely ignored until
very recently: it is more difficult. The first is solely concerned with
thinking: the second involves observation.
The standard device for dealing with (a) is the introduction of situa-

tion variables (McCarthy, 1963; McCarthy and Hayes, 1969) or possible
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worlds (Hintikka, 1967; Kripke, 1963). Symbols prone to change their
denotations with the passage of time are enriched with an extra argu-
ment place which is filled with a term (often a variable) denoting a
situation which one can think of intuitively as a time instant; although
other readings are possible. In order to make statements about the
relationships between situations, and .ne effects of actions, we also
introduce terms denoting events, and the function R (read: result)
which takes events and situations into new situations. Intuitively,
"R(e,$)" denotes the situation which results when the event e happens
in the situation s. By "event" we mean a change in the world: "his
switching on the light", "the explosion", "the death of Caesar". This is
a minor technical simplification of the notation and terminology used
in McCarthy and Hayes (1969) and Hayes (1971). Notice that all the
machinery is defined within L. The situation calculus is a first-order
theory.

Using situations, fairly useful axiomatisations can be obtained for a
number of simple problems involving sequences of actions and events in
fairly complicated worlds (Green, 1969; McCarthy and Hayes. 1969).

The Frame Problem

Given a certain description of a situation s — that is, a collection of
statements of the form 0 Us I, where the fancy brackets mean that every
situation in 0 is an occurrence of 's' — we want to be able to infer as
much as possible about R(e,$). Of course, what we can infer will depend
upon the properties of e. Thus we require assertions of the form:

01 C & 4/(e) D 020 R(e, s)]] (1)

Such an assertion will be called a law of motion. The frame problem
can be briefly stated as the problem of finding adequate collections of
laws of motion.

Notice how easily human thinking seems to be able to handle such
inferences. Suppose I am describing to a child how to build towers of
bricks. I say "You can put the brick on top of this one onto some other
one, if that one has not got anything else on it." The child knows that
the other blocks will stay put during the move. But if 1 write the

corresponding law of motion:

(on (b1,b2,$)& vz. (z,b3,$)) 3 on(bi, b3,R(move(b2,b3),$)) (2)

then nothing follows concerning the other blocks. What assertions

could we write down which would capture the knowledge that the child

has about the world?
One does not want to be obliged to give a law of motion for every

aspect of the new situation. For instance, one feels that it is prolix to

have a law of motion to the effect that if a block is not moved, then it

stays where it is. And yet such laws — instances of (1) in which ch = 02

— are necessary in first-order axiomatisations. They are called frame

axioms. Their only function is to allow the robot to infer that an event

does not affect an assertion. Such inferences are necessary: but one

feels that they should follow from more general considerations than a

case-by-case listing of axioms, especially as the number of frame axioms

increases rapidly with the complexity of the problem. Raphael (1971)

describes the difficulty thoroughly.

This phenomenon is to be expected. Logically, s and R(e,$) are sim-

ply different entities. There is no a priori justification for inferring any

properties of R(e.$) from those of s. If it were usually the case that

events made widespread and drastic alterations to the world (explo-

sions, the Second Coming, etc.), then we could hardly expect anything

better than the use of frame axioms to describe in detail, for each

event, exactly what changes it brings about. Our expectation of a more

general solution is based on the fact that the world is, fortunately for

robots, fairly stable. Most events — especially those which are likely to

be considered in planning — make only small local changes in the world,

and are not expected to touch off long chains of cause and effect.

Frame Rules

We introduce some formalism in order to unify the subsequent dis-

cussions. Any general solution to the frame problem will be a method

for allowing us to transfer properties from a situation s to its successor

R(e,$); and we expect such a licence to be sensitive to the form of the

assertion, to what is known about the event e, and possibly to other

facts.
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Consider the rule scheme FR:

LOD!, 4/(e) i- ER(e. 4s)]
provided 8(e,40, . (FR)

where 8 is some condition on e, 0 and 0 , expressed of course in the
metalanguage. We will call such a rule a frame rule. The hope is that
frame rules can be used to give a general mechanism for replacing the
frame axioms, and also admit an efficient implementation, avoiding the
search and relevancy problems which plague systems using axioms
(Green, 1969; Raphael, 1971).

One must, when considering a frame rule, be cautious that it does
not allow contradictions to be generated. Any addition of an inference
rule to Le, especially if not accompanied by extra syntax, brings the
risk of inconsistency, and will, in any case, have dramatic effects on the
metatheory of the calculus. For instance, the deduction theorem fails.
Thus a careful investigation of each case is needed. In some cases, a
frame rule has a sufficiently simple condition that it may be replaced
by an axiom scheme, resulting in a more powerful logic in which the
deduction theorem holds. This usually makes the metatheory easier and
implementation more difficult.

Some Partial Solutions Using Frame Rules

The literature contains at least four suggestions for handling the
problem which are describable by frame rules. In each case we need
some extra syntactic machinery.

Frames

Following McCarthy and Hayes (1969), one assumes a finite number
of monadic second-order predicates P,. If Pi(h) for a non-logical
symbol h (predicate, function or individual constant) then we say that
h is in the ith block of the frame. The frame rule is

Pi1(1i1),...,Pin(10,0[1.311,P1(e) I- R(C, s)1 (3)

where are all the non logical symbols which occur crucially in
, and ik * %, 1 < k < n. Here crucial is some syntactic relation between

h and 0; different relations give different logics, with a stronger or

weaker frame rule.

Causal connection

We assume (Hayes 1971) that there is a 3-place predicate ->(x,y,$)

(read: x is connected to y in situation s) which has the intuitive mean-

ing that if x is not connected toy, then any change toy does not affect

x. It seems reasonable that -+ should be a partial ordering on its first
two arguments (reflexive and transitive). The frame rule is:

0[4,-1-> (hoe, s), (hn,e, s) 0I[R(e, s)1 (4)

where (i) 0 is an atom or the negation of an atom; (ii) are all
the terms which occur crucially in 0.

If we insisted only that 1 +(hz,e,$) is not provable (rather than
(h,,e,$) is provable) then the rule is much stronger but no longer

obeys the extension property. This is analogous to PLANNER's method
below.

MICRO-PLANNER

The problem solving language MICRO-PLANNER (Sussman and
Winograd, 1969) uses a subset of predicate calculus enriched with nota-

tions which control the system's search for proofs. We will ignore the
latter aspect for the present and describe the underlying formalism. Its
chief peculiarity is that it has no negation, and is therefore not troubled
by the need for consistency.

Following MICRO-PLANNER we introduce the new unary proposi-
tional connective therase. Intuitively, therase 6 will mean that 0 is
"erased". We also introduce the notion of a transition: an expression
(e: 01,...,0n). This means intuitively "erase 0...0 in passing from s to
R(e,$)". The frame rule is:

x, 0[31, (e: 01, ...,0n) 01R(e, s)1 (5)

where (i) 0 is an atom; (ii) 0 contains no variables (other than s); (iii) x,
therase 01, therase On 14- therase CIA. Notice the negated inference

in (iii). Vs
13
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STRIPS

The problem-solving system STRIPS (Fikes and Nilsson, 1971) uses
the full predicate calculus enriched with special notations ("operator
descriptions") describing events, and ways of declaring certain predi-
cates to be primitive. We can use transitions to describe this also. The
frame rule is:

(6)

where (i) is an atom or the negation of an atom; (ii) 4) contains no
variables (other than s); (iii) the predicate symbol in 1) is primitive;
(iv) Ms] is not an instance of any cpi, 1 f n. Notice the similarity to
(5). Primitive can be axiomatised by the use of a monadic second-order
predicate, as in (1) above.

These four rules have widely divergent logical properties. Rule (3) is
replaceable by an axiom scheme, and is thus rather elementary. It is
also very easy to implement efficiently (theorem-proving cognoscenti
may be worried by the higher-order expressions, but these are harmless
since they contain no variables). Variations are possible, e.g., we might
have disjointness axioms for the Pi and require -1/31(hk ) rather than
Pik(hk): this would be closely similar to a special case of (4).

Retaining consistency in the presence of (3) requires in non-trivial
problems that the Pi classification be rather coarse. (For instance, no
change in position ever affects the colour of things, so predicates of
location could be classed apart from predicates of colour.) Thus frames,
although useful, do not completely solve the problem.

Rule (4) is also replaceable by an axiom scheme, and the restriction
to literals can be eliminated, with some resultant complication in the
rule. Also, there is a corresponding model theory and a completeness
result (Hayes, 1971), so that one can gain an intuition as to what (4)
means. Retaining consistency with (4) requires some care in making
logical definitions.

Rules (5) and (6) have a different character. Notice that (6) is almost
a special case of (5): that in which therase therase 4, if iii is not
primitive or tp is an instance of 0. The importance of this is that
instantiation, and probably primitiveness also, are decideabk, and con-

ditions (iii) and (iv) in (6) are effectively determined solely by examin-
ing the transition, whereas condition (iii) in (5) is in general not decida-

ble and in any case requires an examination of all of x: in applications,

the whole set of beliefs. MICRO-PLANNER uses its ability to control

the theorem-proving process to partly compensate for both of these
problems, but with a more expressive language they would become

harde: `1 handle. Notice also that (5) does not satisfy the extension

property, while (6) does, provided we allow at most one transition to

be unconditionally asserted for each event.
Maintaining "consistency" with (5) is a matter of the axiom-writer's

art. There seem to be no general guidelines. Maintaining consistency

with (6) seems to be largely a matter of judicious choice of primitive

vocabulary. There is no articulated model theory underlying (5) or (6).

They are regarded more as syntactic tools — analogous to evaluation

rules for a high-level programming language — than as descriptive asser-
tions.

A (Very) Simple Example: Toy Bricks

labove (x, x, s)
x = Table V above (x, Table, s)
above(x, y, s) on(x, v. s) v3 :.on(:, y, s) & above(x, z, s)
free(x, s) V y -1 on s)

(A!)
(A2)
(A3)
(A4)

To enable activity to occur we will have events move(x,y): the brick
x is put on top of the brick y. Laws of motion we might consider
include:

free(x, s) & x y. D on (x, y, R(move(x, y). s)) (AS)
free(x, s) & w 4 x & on(v, :„5). D on(w, z, R(move(x, s)) (A6)
free(x, s) & w # x & above(w, z, s). J abmv(w, R(more(x, y), s))

(A7)

free(x, s) & w 4 y & frec(w, s). D free(w, R(move(x,y),$)) (A8)

Of these, (A6—A8) are frame axioms. (In fact, (A7) and (A8) are redun-
dant, since they can, with some difficulty, be derived from (A6) and
(A3), (A4) respectively.) (A5) assumes somewhat idealistically that
there is always enough space on y to put a new brick.

Rule (3) cannot be used in any intuitively satisfactory way to replace
A6—A8.
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Rule (4) can be used. We need only to specify when bricks are
connected to events:

(x, move(y, z),$)ar. x = y v above(x, y, s)

Using (A9) and (A3), (A4), it is not hard to show that

free(x, s) & w x & on(w,z, s). D. 1 (w, move(x, y),$) &

—■ (z,move(x, y), s)

(A9)

and thus, we can infer on {w, z, R [move (x, ;'),s11 by rule (7). (A7) and
(A8) are similar but simpler. (One should remark also that (A4) is an
example of an illegal definition, in the presence of (4), since it sup-
presses a variable which the rule needs to be aware of. It is easy to fix
this up in various ways.)

Rule (5) can also be used, but we must ensure that therase does a
sufficiently thorough job. Various approaches are possible. The follow-
ing seems to be most in the spirit of MICRO-PLANNER. In its terms,
on and above statements will be in the data-base, but free statements
will not. The necessary axioms will be:

therase free(x, s) (A10)
therase on(x, y, s) & above(y, z, s) J therase above (x, z, s) (All)
free(x, s) 3 (move(x, y): on(x, z, s)) (Al2)

To infer statements free[x,R(e,$)1, we must first generate enough
on[x,y,R(e,$)] statements by rule (5), and then use (A4), since by
(A10), rule (5) never makes such an inference directly. (We could omit
(A10) and replace (Al2) by

free(x, s) 3 (move(x, y): on(x, z, s), free(y, s)) . (A13)

This would, in MICRO-PLANNER terms, be a decision to keep free
assertions in the data base.)

Notice that MICRO-PLANNER has no negation and hence no need
to therase such assertions as 1 on(x,y,$). If it had negation we would
replace (Al2) by

free(x, s) 3 (move(x, y): on(x, z, s),ion(x, y, s)) (A14)

and add

therase y, s) & above(y, z, s) 3 therase labove(x. z, s) (A15)

Notice the close relations between (A3), (A 1 1) and (A15).
Rule (6) can be used similarly to (5), but we are no longer able to use

axioms such as (A I 1) and (A15). The solution which seems closest in
spirit to STRIPS is to declare that on is primitive but that above and
free are not, and then simply use (A14). The "world model" (Fikes and
Nilsson, 1971) would then consist of a collection of atoms on (a,b), or
their negations, and the system would rederive above and free assertions
when needed. This is very similar to MICRO-PLANNER's "data-base",
and we could have used rule (5) in an exactly similar fashion.

Implementing Frame Rules

Some ingenuity with list structures enables one to store assertions in
such a way that

(i) Given s, one can easily find all assertions cpgsl.
(ii) Each symbol denoting a situation is stored only once.
(iii) The relationships between s and R(e,$), etc., are stored efficient-

ly and are easily retrieved.
(iv) To apply a frame rule to s, one need only:
(a) Create a new cell pointing to s.
(b) Move two pointers.
(c) Check each 011s]] for condition N: if it holds, move one

pointer.
In the case of a rule like (5) or the variation to (4), where t is a

negative condition (-f), we need only examine those Oils]] for which the
condition fails, resulting in greater savings.

Space does not permit a description of the method, but MICRO-
PLANNER and STRIPS use related ideas. (The authors of these systems
seem to confuse to some extent their particular implementations with
the logical description of the frame rules, even to the extent of claiming
that a logical description is impossible.)

Consistency and Counterfactuals

Frame rules can be efficiently implemented and, in their various
ways, allow the replacement of frame axioms by more systematic ma-
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chinery. But there is a constant danger, in constructing larger axiomati-
sations, of introducing inconsistency. An alternative approach avoids
this by transferring properties 0 from s to R(e,$) as long as it is consis-
tent to do so, rather than according to some fixed-in-advance rule.

Suppose we have a set x of general laws which are to hold in every
situation, and a description of — a set of assertions about — the situa-
tion s: {01 1s1,...,cf)nisi) . Using laws of motion we will directly infer
certain properties IP i ,..., O m of R(e,$): the set of these constitutes a
partial description of R(e,$). To compute a more adequate one, we add
assertions 0,IR(e,$)ji in some order, checking at each stage for consis-
tency with x; if a 0illR(e,$)11 makes the set inconsistent, it is rejected.
This continues until no more Oi can be added. In this way we compute
a maximal consistent subset (MCS) of the inconsistent set

x u {4,1, , (pi I/2(e, s)1, s)1) .

There are two big problems: (1) Consistency is not a decidable or
even semi—decidable property. Thus for practicality one has to accept a
large restriction on the expressive power of the language. (2) There are
in general many different MCSs of an inconsistent set, and so we must
have ways of choosing an appropriate one. In terms of the procedure
outlined above, we need a good ordering on the (pi.

This procedure is closely similar to one described by Rescher (1964)
to provide an analysis of counterfactual reasonings ("If I had struck this
match yesterday, it would have lit", when in fact I didn't.). Rescher is
aware of the first problem but gives no solution. His major contribution
is to the second problem, which he solves by the use of modal cate-
gories: a hierarchical classification of assertions into grades of law-like-
ness. One never adds 0,11R(e,$)] unless every (pi with a lower classifica-
tion has already been tested. This machinery is especially interesting as
in (Simon and Rescher, 1966) it is linked to Simon's theory of causality
(Simon, 1953). One puts 0; in a lower category than ct)i just in case cpi
causes 0/ (or —10i), more or less. Space does not permit a complete
description of this interesting material which is fully covered in the
references cited. In spite of its appeal, the first problem is still unsolved.

In unpublished work at Stanford, Jack Buchanan has independently
worked out another version of the procedure. The first problem is
handled by accepting a drastic restriction on the language. Every 0; is
an atom or the negation of an atom — c.f. frame rules (7), (8) and (9) —

and, more seriously, x contains only assertions of the form t1 t2 or of

the form P(11 ,...,t,...,tn ) and = u. Under these con-

straints, consistency is decidable and can even be computed quite effi-

ciently. Moreover, MCSs are unique, so the second problem evaporates.

However, it is not clear whether non-trivial problems can be reasonably

stated in such a restricted vocabulary.

Conclusions

In the long run, I believe that a mixture of frame rules and consis-

tency-based methods will be required for non-trivial problems, corre-

sponding respectively to the "strategic" and "tactical" aspects of com-

puting descriptions of new situations. In the short term we need to

know more about the properties of both procedures.
One outstanding defect of present approaches is the lack of a clear

model theory. Formal systems for handling the frame problem are be-
ginning to proliferate, but a clear semantic theory is far from sight.
Even to begin such a project would seem to require deep insight into

our presystematic intuitions about the physical world.

Observations and the Qualification Problem

We have so far been entirely concerned with thinking. The situation
calculus is a belief calculus for beliefs about time. Observations — inter-
actions with the real world — introduce new problems. We must now
consider the second aspect of time (b,p. ).

Almost any general belief about the result of his own actions may be
contradicted by the robot's observations. He may conclude that he can
drive to the airport; only to find a flat tire. A human immediately says,
"Ah, now I cannot go". Simply adding a new belief ("the tire is flat")
renders an earlier conclusion false, though it was a valid conclusion
from the earlier set of beliefs, all of which are still present. Thus we do
not assume that the robot had concluded "If my tires are OK, then I
can get to the airport" since there are no end of different things which
might go wrong, and he cannot be expected to hedge his conclusions
round with thousands of qualifications (McCarthy and Hayes, 1969).
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Clearly this implies that the belief logic does not obey the extension
property for observations: to expect otherwise would be to hope for
omnipotence. However, we are little nearer any positive ideas for hand-
ling the inferences correctly.

John McCarthy recently pointed out to me that MICRO-PLANNER
has a facility (called THNOT) which apparently solves the problem
nicely. I will translate this into a slightly different notation.
We introduce a new unary propositional connective proved, which is

supposed to mean "can be proved from the current collection of be-
liefs". Then we can write axioms like the following:

flat (tire) kaput (car)

-1proved kaput (car) J at {robot, airport, R[drive(airport), s]} (A17)

from which at(robot, airport, ...) should be concluded until we add:

flat (tire) (A18)

at which point the -1proved... becomes false. (lproved is PLANNER's
THNOT).
To make this work we could try the following rules of inference.

q5 I- proved 0 (P1)

X I- "lproved q5 (P2)

where X 11- 0-
(P2) fails the extension property, as expected. (It also has the diffi-

culties of effectiveness which worry frame rule (5), but we will ignore
these.)

Unfortunately, (P1) and (P2) are inconsistent. Suppose x11-0, but that
0 is consistent with x. Then by (P2), -I proved 0. But if we now add 0
(an observation: the flat tire), then by (P1) proved 0: an overt contra-
diction. MICRO-PLANNER avoids this by denying (P1) and treating "0
and -1 proved 0" as consistent. But this is a counsel of despair, since it
clearly is not, according to the intuitive meanings.
The logical answer is to somehow make proved refer to the set x of

antecedents. The direct approach to this requires extremely cumber-
some notation and a very strong logic which partly contains its own
metatheory, thus coming close to Godel inconsistency. Fortunately we
do not need to describe sets x of assertions, but only to refer to them,

and this can be done with a very weak notation, similar to situation
variables.
Assume that every belief is decorated with a constant symbol called

the index: we will wr;te it as a superscript. Indices denote the robot's
internal belief states just as situation terms denote external situations.
Observations are analogous to events. Assertions proved 0 now have an
extra index which identifies the state of belief at the time the inference
was tested. The above rules of inference become:

Os F— proved' 05

lproveds 0s

where x if cps and every member of x has index s.

In applications we now insist that:
(i) in applying P2', x contains all beliefs with index s;
(ii) whenever an observation is added to the beliefs, every index s is

replaced by a new one s', except those on proved assertions.
This is just enough to avoid inconsistency; it clearly does not involve

any Godel-ish difficulties; and (ii) can be very efficiently implemented
by frame-rule methods (see section Implementing Frame Rules). In-
deed, more complex versions of (ii) which allow for direct contradic-
tion between beliefs and observations can be similarly implemented.
The logic of these indices is trivial, but extensions have some interest.

For instance, if we identify indices with situation terms, then expres-
sions of the form Olis become legal, with the intuitive meaning "0 is
true now".

Seen this way, the qualification problem is closely linked with the
frame problem, and one expects progress in either area to help with the
other.
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