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Abstract

In this paper we examine tests for cointegration which allow for the possibility of
regime shifts. We propose ADF—, Z,—, and Z;— type tests designed to test the null of no
cointegration against the alternative of cointegration in the presence of a possible regime
shift. In particular we consider cases where the intercept and/or slope coefficients have a
single break of unknown timing. A formal proof is provided for the limiting distributions of
the various tests for the regime shift model (both a level and slope change). Critical values
are calculated for the tests by simulation methods and a simple Monte Carlo experiment
is conducted to evaluate finite sample performance. In the limited set of experiments, we
find that the tests can detect cointegrating relations when there is a break in the intercept
and/or slope coefficient. For these same experiments, the power of the conventional ADF
test with no allowance for regime shifts falls sharply. As an illustration we test for structural
breaks in the U.S. long-run money-demand equation using annual and quarterly data.
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1. Introduction

It is now routine for researchers to test for cointegration when working with multivari-
ate time series. The most widely applied tests are residual-based ones in which the null
hypothesis of no cointegration is tested against the alternative that the relation is coin-
tegrated in the sense of Engle and Granger (1987), meaning that a linear combination of
the integrated variables has a stationary distribution. A large sample distribution theory
for this class of tests has been studied by Phillips and Ouliaris (1990). Rejection of the
null hypothesis in this context implies the strong result that the variables are cointegrated.
Acceptance of the null hypothesis is often taken as evidence of the lack of cointegration.

While these tests and the associated distributional theory are appropriate f(;r the pre-
cise question of no cointegration versus cointegration, there are many related questions
which may appear quite similar, but actually require a different set of tests and distribu-
tional theory. In this paper we are concerned with the possibility of a more general type of
cointegration, where the cointegrating vector is allowed to change at a single unknown time
during the sample period. While our null hypothesis (no cointegration) is the same, our
alternative hypothesis is different than the conventional tests. Indeed, we extend the class
of models under consideration, since our alternative hypothesis contains the Engle-Granger
model as a special subcase.

The motivation for the class of tests considered here derives from the conventional
notion of regime change. In some empirical exercises, a researcher may wish to entertain
the possibility that the series are cointegrated, in the sense that a linear combination of the
non-stationary variables is stationary, but that this linear combination (the cointegrating
vector) has shifted at one (unknown) point in the sample. In this context, the standard
tests for cointegration are not appropriate, since they presume that the cointegrating vector
is time invariant under the alternative hypothesis. A new class of residual-based tests for
cointegration are needed which include in the alternative hypothesis the models considered
here.

Specifically, we propose extensions of the ADF, Z,, and Z; tests for cointegration.
Our tests allow for a regime shift in either the intercept alone or the entire coefficient

vector, and are non-informative with respect to the timing of the regime shift. This pre-
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vents informal data analysis (such as the visual examination of time series plots) from
contaminating the choice of breakpoint. The tests of this paper can be viewed as multi-
variate extensions of the univariate tests of Perron (1989), Zivot and Andrews (1992) and
Banerjee, Lumsdaine, and Stock (1992). These papers tested the null of a unit root in a
univariate time series against the alternative of stationarity, while allowing for a structural
break in the deterministic component of the series. In fact, the results of these papers
can be viewed as a special case of our results, when the number of stochastic regressors is

taken to be zero.

The asymptotic distributions of the test statistics are derived. We find that the
asymptotic distributions of the proposed test statistics are free of nuisance ‘parameter
dependencies, other than the number of stochastic and deterministic regressors. The dis-
tributional theory is more involved than the theory for the conventional cointegration
model (see Phillips and Ouliaris, 1990) due to the inclusion of dummy variables and the
explicit minimization over the set of possible breakpoints. It should be emphasized that
our results are more general than the other results which have appeared in the literature on
breaking trends and unit roots. Zivot and Andrews (1992) provided a fully rigorous proof
for the simple Dickey-Fuller statistic in the univariate case, under the assumption of iid
innovations. In contrast, we examine the more cumbersome Phillips Z, and Z; tests in the
multivariate case, while allowing for general forms of serial correlation in the innovations

through the use of mixing conditions.

Since there are no closed-formed solutions for the limiting distributions, critical values
for up to four regressors are calculated for the tests by simulation methods. Also, since
the computational requirements from recursive calculations are extremely high, preventing
simulations with large sample sizes, we follow MacKinnon (1991) and estimate response
surfaces to approximate the appropriate critical values. We evaluate the finite sample
performance of the tests using Monte Carlo methods based upon the experimental design
of Engle and Granger (1987). In a limited set of experiments, we find the tests can detect
cointegrating relations when there is a break in the intercept and/or slope coefficient. For
these same experiments, the power of the conventional ADF test with no allowance for

regime shifts falls sharply.



The tests of the present paper are clearly useful in helping lead an applied researcher
to a correct model specification. Many researchers start a cointegration analysis with the
usual augmented Dickey-Fuller (ADF) test, and proceed only if the statistic rejects the null
of no cointegration. If the model is indeed cointegrated with a one-time regime shift in the
cointegrating vector, the standard ADF test may not reject the null and the researcher will
falsely conclude that there is no long-run relationship. Indeed, Gregory and Nason (1992)
have shown that the power of the conventional ADF test falls sharply in the presence of
a structural break. In contrast, if the tests of the present paper are employed, there is a
better chance of rejecting the null hypothesis, leading to a correct model formulation.

The tests of this paper are complementary to those of Hansen (1992a). In that paper,
Hansen developed a series of tests of the hypothesis of time invariance of the coefficients
of a cointegrating relation. His null hypothesis is Engle-Granger cointegration, while our
null hypothesis is no cointegration. Hansen’s tests are best viewed as specification tests for
the Engle-Granger cointegration model. In contrast, the tests of this paper are tests for
cointegration, and are therefore best viewed as pre-tests akin to the conventional residual-
based cointegration tests.

As an illustration of the techniques, we test for structural breaks in the U.S. long-
run money-demand equation using annual and quarterly data. Our results are consistent
with those of Gregory and Nason (1992), who found evidence of instability in the long-run
relationship.

The organization of the paper is as follows. In Section 2 we develop several single-
equation regression models which allow for cointegration with structural change. In Section
3 we describe various tests for the null of no cointegration with power against the structural
change alternatives outlined in Section 2. Section 4 contains the asymptotic distribution
theory for the tests. Critical values are calculated using simulation methods. Section 5
assess the finite sample properties of the structural change tests in a simple Monte Carlo
experiment and Section 6 examines an illustrative empirical example based upon money
demand. Finally in Section 7 we close with some concluding remarks and suggest several

directions for future research.



2. Model

In this section we develop single-equation regression models which allow for cointegra-
tion with structural change. The observed data is y; = (y1¢, y2t), where y;; is real-valued
and yz; is an m-vector. We commence with the standard model of cointegration with no

structural change.

Model 1: Standard Cointegration

Y1t = 4+ a'yy + e, t=1,...,n, (2.1)

where ya¢ is I(1) and e; is I(0). In this model the parameters x4 and a describe the m-
dimensional hyperplane towards which the vector process y; tends over time. Engle and
Granger (1987) describe cointegration as a useful model for “long-run equilibrium”.

In many cases, if model 1 is to capture a long-run relationship, we will want to
consider x4 and a as time invariant. But in other applications, it may be desirable to think
of cointegration as holding over some (fairly long) period of time, and then shifting to a
new “long-run” relationship. We treat the timing of this shift as unknown . The structural
change would be reflected in changes in the intercept p and/or changes to the slope a.

To model structural change, it is useful to define the dummy variable:

_ 0, ift < [n7]
Pt=11, ift >[nr]

where the unknown parameter 7 € (0, 1) denotes the (relative) timing of the change point,
and [] denotes integer part.

Structural change can take several forms. A simple case is that there is a level shift in
the cointegrating relationship, which can be modeled as a change in the intercept u, while

the slope coefficients o are held constant. This implies that the equilibrium equation has

shifted in a parallel fashion. We call this a level shift model denoted by C.

Model 2: Level Shift (C)

Yie = g1 + poper + aTygt + e, t =1,...,n. (2.2)
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In this parameterization y; represents the intercept before the shift, and y; represents the
change in the intercept at the time of the shift. We can also introduce a time trend into

the level shift model.

Model 3: Level Shift with Trend (C/T)
Yie =1 + poper + Bt + o'y + e, t = 1,...,n. (2.2)

Another possible structural change allows the slope vector to shift as well. This

permits the equilibrium relation to rotate as well as shift parallel. We call this the regime

shift model. -

Model 4: Regime Shift (C/S)
Yt = p1 + poPer + O Yor + 03 Yarper + €, t = 1,10 (2.3)

In this case u; and py are as in the level shift model, a; denotes the cointegrating slope

coefficients before the regime shift and a; denotes the change in the slope coefficients.
There are certainly other candidate models which might be used to analyze structural

shifts in cointegrated relationships. For instance we could have a shift in the trend function

as well as a regime shift.

Model 5: Regime Shift with a Shift in Trend (C/S/T)
Y1t = p1 + p2per + Pit + Potoer + af yar + 0g Yarper + €1, t = 1,..,n. (2.5)

Here f3;, represents the slope of the trend before the structural break and S represents the
change.

The standard methods to test the null hypothesis of no cointegration (derived in the
context of model 1) are residual-based. The candidate cointegrating relation is estimated
by ordinary least squares (OLS), and a unit root test is applied to the regression errors.
In principle the same approach could be used for testing models 2-5, if the timing of the
regime shift 7 were known a priori. We take the view that such break points are unlikely

to be known in practice without some appeal to the data. Indeed much of the debate
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about whether there was a regime shift in U.S. GNP around 1929 (as identified in Perron,
1989) can only be resolved conditional on the data (see Banerjee, Lumsdaine, and Stock,
1992; Cristiano, 1992; and Zivot and Andrews, 1992). Similar problems occur in testing
for regime shifts in cointegrated models and so we develop tests procedures that do not
require information regarding the timing of or indeed the occurrence of a break.

This completes the description of the structural change models under cointegration.
In the next section we analyze some tests designed to detect cointegration in the possible

presence of such breaks.

3. Testing the Null of No Cointegration -

Hansen (1992a) constructed tests of model 1 against the alternative of model 4. A
statistically significant test statistic in this context would be taken as evidence against
the standard cointegration model in favor of the regime shift model. However before
calculating such a test, an applied econometrician might wish to apply a conventional test
for cointegration, such as the ADF test, in the context of model 1. If the true process
is represented by model 4, and not model 1, the distributional theory used to assess the
significance of the ADF test statistic is not same. In this section we develop such tests of
the null of cointegration against the alternatives in models 2-4.

Define the innovation vector

Uy = Ayt,
its cumulative process
t
St = Zuia
i=1
(so y+ = yo + St), and its long-run variance

Q = lim lES,,S,T :

n—oo n

When u; is covariance stationary, {2 is proportional to the spectral density matrix evaluated
at the zero frequency.

Our null hypothesis is that model 1 holds, with e, = I(1). This has the implication

that @ > 0. We include this aspect of the null hypothesis in the following regularity

conditions:



Assumptions:

(a) {u:¢} is mean-zero and strong mixing with mixing coefficients of size 6_{1’%, and

Eluy? < oo forsomep > f > 3.

(b) The matrix Q exists with finite elements and > 0.
(c) yo is a random vector with E|yg| < oo.

The solution we adopt to handling regime shifts is similar to that of Banerjee, Lums-
daine, and Stock (1992) and Zivot and Andrews (1992). We compute the cointegration
test statistic for each possible regime shift 7 € T, and take the smallest value (the largest
negative value) across all possible break points. In principle the set T' can be any compact
subset of (0,1). In practice, it will need to be small enough so that all of the statistics dis-
cussed here can be calculated. For example T' = (.15, .85) seems a reasonable suggest;ion,
following the earlier literature. Although T' contains an uncountable number of points, all
the statistics that we consider are step functions on T, taking jumps only on the points

%, iinteger}. For computational purposes, the test statistic is computed for each break
point in the interval ([.15n], [.85n]).

We now describe the computation of the test statistics. For each 7, estimate one
of the models 2-4 (depending upon the alternative hypothesis under consideration) by
OLS, yielding the residual €;r. The subscript 7 on the residuals denotes the fact that the
residual sequence depends on the choice of change point 7. From these residuals, calculate

the first-order serial correlation coefficient

n—1 A -
a t=1 €trCt+1r
Pr = n—1 .9
t=1 etT

The Phillips (1987) test statistics are formed using a bias-corrected version of the

first-order serial correlation coefficient. Define the second- stage residuals
Utr = €tr — Prét—1r.

The correction involves the following estimate of a weighted sum of autocovariances

R M .
A = Y35 40),

i=1



where M = M(n) is the bandwidth number selected so that M — co and %4 = O(1), the

kernel weights w(-) satisfy the standard conditions for spectral density estimators, and
1 n
'71'(.7) = ; z ﬁt-jri)tr-
t=7+1

The estimate of the long-run variance of 7 is
62 = 4.(0) + 2A,.

In this paper the long-run variance is estimated using a prewhitened quadratic spectral
kernel with a first-order autoregression for the prewhitening and an automatic bandwidth
estimator (see Andrews, 1991 and Andrews and Monahan, 1992 for details).
The bias-corrected first-order serial correlation coefficient estimate is given by
A% E:;_ll(étrét+lf - :\r)

Pr = n—1 g
t=1 et‘r

The Phillips test statistics can be written as

Zo(1) = n(p7; — 1)

ﬁ* -1 ) 6’2
Zy(r) = Lrg—)’ = g

T 1 €
The final statistic we discuss is the augmented Dickey-Fuller (ADF) statistic. This is
calculated by regressing Aé;r upon é;—;, and Aé¢—1r,..., Aéi—xr for some suitably chosen
lag truncation K. The ADF statistic is the ¢t—statistic for the regressor é;—;,. We denote
this by
ADF(r) = tstat(és-1-).

These test statistics are now standard tools for the analysis of cointegrating regressions
without regime shifts. Our statistics of interest, however, are the smallest values of the
above statistics, across all values of 7 € T. We examine the smallest values since small
values of the test statistics constitute evidence against the null hypothesis. These test

statistics are

Zy = :ggZa(T) (3.1)
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Z; :relg Zy(T) (3.2)

ADF* = irelg‘ADF('r). (3.3)

4. Asymptotic Distributions

We follow much of the recent literature and give asymptotic distributions for the
test statistics which are expressed as functionals of Brownian motions. This gives simple
expressions for the limit distributions. Since they are not given in closed-form, however,
we use simulation methods to obtain critical values.

Since interest from an applied perspective is likely to be concentrated on models 2
and 4, we will only provide the limiting distributions for those two. OQur formal proofs
are also limited to the Z} and Z} tests. We expect that the limiting distribution of
ADF* is identical to Z;. Models 3 can be shown to have analogous expressions. A
formal proof of the limiting distribution for the distribution of the tests of model 4 is

contained in the appendix.

Theorem 1

If the test statistics are constructed using the residuals from model 2, then under

the null hypothesis
1
Wrdw}
Zy —q inf __fo T

T€T fol W*?

b}
r

o Jywraw;
in ,
BT ZI R e

Z; —
where . .
W) = i) - [ Wil [ waws 1w,
Wi () = W (r), 1, ou ()T,
pel(r) = {r2 7},
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W(r) = (%;E:;) ;Z = BM(Im+1),

. _ 1
A (-[fo‘ Wi W™ fy Wa W ) !

m+1 2
D_m+1 I 0
2 0 0

If the test statistics are constructed using the residuals from model 4, then under

Theorem 2

the null hypothesis

. [y Wedw,
mn s
T€T [ [y W2/2[kT D. k)12

Z} —q

where
Wir) = Walr) = [ WL [ W W ),
WZT(T) = [W2T(r)’ 1’ WJ(T)‘PT(T)’ SDT(T)]T’
‘Pf(r) = {7' 2> T}a

W(r) = (%Eg) L = BM(In),

1
fr = (—[fol Wo, Wy ] ™1 fol Wzrwl) ’
1 0 0 0 0
0 Inm 0 (1—=m)m O
p.=lo o o o o
0 -7 0 (1—7)n O
0 0 0 0 0

Calculating Critical Values
One standard way in which critical values have been obtained in situations where

no closed-form expressions exist is to simulate a test statistic for a large sample size for a
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large number of replications. In the present example, we are unable to use large sample
sizes since the recursive calculations which are required over the sample are particularly
time-consuming on even fast computers. For instance, with n = 300 and 10,000 repli-
cations it took a GATEWAY2000 486/33C over a week to do the relevant calculations
for the one regressor case (m = 1). To reduce the computational requirements we
adopt a procedure due to MacKinnon (1991). Using 10, 000 replications for each sample
sizes n = 50, 100, 150, 200, 250, 300, we obtain critical values, Crt(n,p,m), where p
is the percent quantile and m is the number of regressors in the equation (excluding a
constant and/or trend). We then estimate by ordinary least squares for each p and m

the response surface

Crt(n,p,m) =¥y + Y1n~' + error.

Various other functional relations were tried (involving n=1/2, n=2, n=3/2) but this one
appeared to have the best fit (R?’s were generally over .98). The asymptotic critical
value is taken to be the OLS estimate 1o . Results for p = .01, .025, .05, .10, and
975 and m =1, 2, 3, and 4 are presented in Tables 1A-1D. The symbols C, C/T, and
C/S refer to breaks in the constant (C), and slope coefficient (S) as defined in models
2-4. We also report the OLS standard errors of 1/;0 in parentheses. These should be
interpreted with some skepticism since there is obvious heteroskedasticity in the errors
and more importantly, while this specification of the critical values seemed best overall,

estimates of ¥y changed on occasion by a factor of two under alternative specifications.

5. A Simple Monte Carlo Experiment

In order to gauge the finite sample properties of the proposed test, we conduct a
simple Monte Carlo experiment based upon the design of Granger and Engle (1987) and
also used in Banerjee, Dolado, Hendry and Smith (1986). The model in the absence of

structural change is:
Y1t =14+ 2y + €&, € =pe—1+9:, Y9 ~ NID(0,1),

Yie =Y2e + 0, M =ne—1+w, we ~ NID(0,1),
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where yy; is scalar (m = 1). We first consider the size of the various tests with p = 1, so
that the null of no cointegration is true. In Table 2 we report the rejection frequencies in
1000 replications at the 5 percent level of significance (we also did one and ten percent and
these are available upon request) using critical values from Table 1A. Two sample sizes
(n = 50 and 100) are considered. ADF™*, Z}, Z are the test statistics defined in equations
(3.1) - (3.3) respectively and ADF is the usual augmented Dickey Fuller statistic (1 = 1).
The symbols C and C/T for the usual ADF refer to regressions with a constant and a
constant and a trend. For ADF* and ADF the lag length K is selected on the basis of
a t — test following the procedure outline in Perron and Vogelsang (1992). That is, K is
chosen such that the estimated coefficient on the last included lag of the first difference
is significant at the 5 percent level of significance using asymptotic normal critical values.
Typically over all the experiments including those with regime shifts, K was 0 or 1 but

never greater than 3.

Three general results from the size simulations are: (i) ADF* and ADF have size
near their nominal values; (ii) the Z} is biased away from the null hypothesis for both
sample sizes; and (iii) Z% for n = 50 is biased towards the null but is close to asymptotic
size by sample size 100. The size distortion in Z; makes power comparisons problematic

in the exercises below.

Turning to power in the usual cointegration setting (model 1) we let p = 0 (Table
3) and p = .5 (Table 4). As expected the best power is obtained for the conventional
ADF test that makes no allowance for structural breaks (clearly the size distortion in
Z{ clouds the interpretatiqn of power) . On the other hand, the power loss from faulty
inclusion (i.e. including unnecessary regressors to capture breaks that do not exist ) is not
that large. Nevertheless such rejections might mistakenly lead a researcher to believe that
there is a regime shift when in fact there is a single cointegrating relation. As we would
expect, all tests have lower power when the error in the cointegrating regression is serially
correlated (see Gregory, 1991). In the case of no serial correlation for n = 50 we have
rejection frequencies of over 90 percent for all tests except Z,. Rejection frequencies fall
dramatically with serial correlation (Table 4) at the same sample size (in the 40-50 percent

range for ADF* and Z; and no more than 12 percent for Z}). There is also the tendency
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with more serial correlation for the relative power decline to be larger for the structural
break tests for cointegration than the standard ADF tests.

We postulate a simple structural break for the intercept, slope and then intercept and
slope together (Table 5-7 respectively)

Ye=m,ar=0a; ift <[rn]

= + o x € 1
Yt =7t t Tt + €, {fﬁ:’)’g, ay = ag, 1ft>[Tn]

€ = .Be—1 + Uy
Ye =2t + 1y, Nt = Ng—1 + ws.

The two errors ¥; and w; are uncorrelated and distributed as NID(0,1). Since in applied
work the errors are likely to be serially correlated, we make the break experirr;ents similar
in structure to those in Table 4. A break point occurs at 7 = .25, .5, and .75.

In Table 5 we investigate the ability of the tests to detect cointegration in the presence
of a level shift with v; = 1, 72 = 4, az = 2, and ay = 2. With only an intercept change
we find one important difference between the rejection frequencies in Table 4 (with no
structural break) and Table 5 (where the intercept shifts): the rejection frequency for the
conventional ADF test has fallen substantially under breaks. For instance at n = 50 the
ADF test that includes an intercept (C) has fallen from 70 percent rejection frequency
to only about 20 percent, regardless of where the break occurs. In contrast, the rejection
frequencies for all three of our cointegration tests for all alternative models 2-4 are very
close to those obtained with time invariant relations. As we might expect the best power
results are for the test based on the level shift model 2 (C). In other experiments with
smaller shifts in a2 (not shown but available upon request) the rejection frequencies for
the conventional ADF are close to those of Table 4.

In Table 6 the slope changes but the intercept is fixed over the sample: 7; = 1, 72 = 1,
az = 2, and az = 4. First compared to the tests with no structural break (Table 4) the
rejection frequencies have fallen considerably at n = 50. This changes at n = 100 for tests
designed to detect a break in the intercept/slope (C/S). These rejection frequencies are
high (over 90 percent for ADF* and Z; regardless of when the break occurs and 80 percent
for Z}) especially when compared to the standard ADF tests (rejection frequencies have

fallen to 40 percent for breaks less than half the sample size and 70 percent for breaks
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GNNP, GNNP82 and are seasonally adjusted. This specification is identical to Lucas
(1988) and Stock and Watson (1991).

With this same data, Gregory and Nason (1992) found that all of Hansen ’s (1992c¢)
tests for structural breaks detected a break for both the monthly and quarterly data and
that the conventional ADF' tests indicated that the null of no cointegration could be
rejected for the annual data but not for the quarterly. In Table 9 we report the test
statistics for our tests as well as the estimated break point (in parentheses). In addition,
we calculate the test statistic for the conventional ADF test. For the conventional ADF
test the lag length for K (again selected on the basis of a t-test as outlined in the Section
5) is 1 (annual) and 4 (quarterly) for both the C and C/T tests. The lags selected for
ADF* tests for the C, C/T and C/S are (2,2,0) for the annual and (0,0,0) for the monthly
respectively.

Examining first the annual data, we find that the null hypothesis of no cointegration is
rejected (at the 5 percent level) by our new tests using the C and C/T type formulations,
but not using the C/S formulation. Since the conventional ADF test rejects the same
null, it would be inappropriate to conclude from this piece of information alone that there
is indeed a structural break, since a conventional cointegrated system could produce this
same set of results. The evidence does suggest, however, that there is some sort of long-run
cointegrating relationship between these variables. For this same model and data, Gregory
and Nason (1992) were able to reject the hypothesis of a constant coefficient cointegrating
relationship in favor of a one-time regime shift. Taken together, these tests suggest that
a model of cointegration subject to a regime shift is a better description of the data than
the conventional cointegration model. The estimated break point is roughly at half of the
sample (1944). In Figure 2 we graph the ADF(7) using the annual data for C, C/T, and
C/S over the truncated sample. Clearly there is a well-defined single minimum for all three
of these tests.

Turning to the quarterly data, we first notice that the conventional ADF tests fail
to reject the null of no cointegration. Thus some applied researchers might conclude that
there is not sufficient evidence to pursue the possibility of a long-run relationship. The

tests which allow for only a level shift (the C and C/T tests) also fail to reject the null. We
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find, however, that the null is rejected at the 5 percent level by the most general alternative
(the C/S test) which allows for both the intercept and the slope coefficient to shift. For
this data set and model, allowing for the possibility of a regime shift has an important
effect upon our conclusions regarding the long-run relationship between the series. The
break point for the C/S tests which rejects the null is again at the middle of the sample
7 = .52.

In Table 10 for both data sets we present the OLS estimates (not corrected for bias)
for the money-demand estimates as well as the estimated change for models 1 - 4. Overall
our results reinforce the conclusions of Gregory and Nason (1992); namely that there is

evidence against the stability of the U.S. long-run money-demand equation.
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7. Final Remarks

The concept of cointegration, originally formulated by Engle and Granger (1987), is
that over the long-run, a special linear combination of nonstationary variables may be sta-
tionary, and thus mean-reverting. The idea was that these special linear combinations (the
cointegrating vector) should reflect some sort of economic fundamentals. Upon reflection,
and in the course of empirical work, it is becoming clear that applied economists may be
interested in allowing the cointegrating relationships to change over time. In order for the
concept of cointegration to retain significant empirical context, empirical work will have to
restrict the types of structural change permitted. The most basic type of structural change
is the one-time regime shift model, in which the parameters are permitted t—o change at
one time in the sample. Other models are of course possible, but may require more careful
analysis.

If structural change is to be entertained in cointegrated models, applied economists
need appropriate test statistics to determine if there is any evidence for such a model. The
standard testing procedure is to set up the null of no cointegration against the alternative
of cointegration, so rejection is considered evidence in favor of the model. In this paper we
extend this family of test statistics, by setting the alternative hypothesis to be cointegra-
tion, while allowing for a one-time regime shift of unknown timing. Rejection of the null
hypothesis, therefore, provides evidence in favor of this specification.

It is important to note, however, that this type of hypothesis test does not provide
much evidence concerning the question of whether or not there was a regime shift, since
the alternative hypothesis contains as a special case the standard model of cointegration
with no regime shift. Instead, appropriate statistics for testing the hypothesis of no regime
shift against the alternative of a regime shift, for a cointegrated regression model, are given
in Hansen (1992a). The test statistics of the present paper complement those of Hansen
(1992a), and both types of test statistics are likely to be useful to an economist interested
in the possibility of structural change in a potentially cointegrated regression model.

As illustrated in our analysis of the money demand relationship in the previous sec-
tion, we believe that empirical investigations will be best served by using a number of

complementary statistical tests. One difficult task for the applied researcher is to juggle

17



these separate pieces of the puzzle, but we can offer a few suggestions. The standard ADF
statistic and our ADF* statistics both test the null of no cointegration, so rejection by
either statistic implies that there is some long-run relationship in the data. If the standard
ADF statistic does not reject, but the ADF* does, this implies that structural change in
the cointegrating vector may be important. If both the ADF and the ADF™ reject, no
inference that structural change has occurred is warranted from this piece of information
alone, since the ADF* statistic is powerful against conventional cointegration. In this
event, the tests of Hansen (1992a) are useful to determine whether the cointegrating re-
lationship has been subject to a regime shift. Unfortunately at this stage we have little
guidance as to how to control for Type I error under such procedures which suggests that
additional Monte Carlo work would be worthwhile.

The analysis of this paper has been confined to the question of developing residual-
based tests for cointegration in the presence of a regime shift. We have not addressed
the issue of efficient estimation of a cointegrated model in the presence of a regime shift,
and leave this subject for future research. We have also confined our analysis to the
residual-based testing methodology originally advocated by Engle and Granger (1987) and
investigated by Phillips and Ouliaris (1990). It would be interesting and useful to develop
an analogous set of test statistics using the likelihood ratio testing approach advocated by

Johansen (1988, 1991).
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Appendix: Mathematical Proofs

We will rigorously prove Theorem 2. The proof of Theorem 1 is omitted , since it
is quite similar. To simplify the presentation assume that yo = 0. Throughout the
presentation, == denotes weak convergence of the associate probability measures, and
{A} denotes the indicator function for event A ({A} = 1 when A is true, and {A} = 0
when A is false).

A.1 Definitions

It turns out to be convenient to partition the random vectors in various ways in
different parts of the argument. We lay out these partitions here for a point of reference.
Partition S; = (Si¢, S;;)T in conformity with u;. All of the statistics can be written as
functions of sample moments of the (2m + 3) — vector
St
1

Satper
Ptr

X, =

tr

Define the subvectors X; = (S;7,1)7, X1t = Sis, Xat = (53, 1) 7, Xotr = Xotper, XFyr =
S1t, and X3,, = (Xj;, X;,)7. This allows X}, to be partitioned several ways, including

Xt 1
X{ 1 X m+ 2
X7 = LT = ¢ = 1.
i (X;tr) 2m +2 (X2t‘r> m+1 (5?22:) zil

A.2 Moment Matrices

The starting point for the asymptotic analysis is the multivariate invariance principle
n~2S,, = B(r) = BM(Q). (A1)

This holds under our assumptions as shown by Herrndorf (1984) (see Phillips and Durlauf,
1986, for the extension to the vector case). Define 6, = diag(n~'/%I,, 1) and X(r) =
(B(r)7, 1)7. (Al) implies

X = X(r) (A2)
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and
[n7]

1
~6x ;thﬂs — / xxT, (43)
by the continuous mapping theorem (see Billingsley, 1968, Theorem 5.1).

Define ¢, = {r > 7} and X.(r) = X(r)p-(r), where { } denotes the indicator
function. Partition X = (X3, X;)', X = (X1r,X5,)", and 6, = diag(61n, d2n)
conformably with S;.

From (A3) we obtain

1 = 1 2
;;62nZX2trX21;1—62n = ;5211 Z X2t X 5¢62n ] (A4)
t=1 t=[nrt]
= / X X,

/ X2TX21'

Now define 6% = diag(6n, 62,) and X2(r) = (X(r)7, X2r(r)7)7. (A3) and (A4)

combine to yield the moment matrix for the entire data vector

1 1
5, ZX* xXTs = / xex:T (45)
t= o

A.8 Least Squares Coefficient Process

The regressors in model 3 are the elements of the vector X3,, and the dependent
variable is y1; = X{,,. Partition X} = (X},, X37)" and 6% = diag(6},, 63,) conformably. |
Note that 6%, = n~1/2, Define §, = (&, ji1, 62, fiz) as the least square estimator of

model 3 for each 7. It follows from (A5) and our definitions that

-1/26211 T [n—162n Z X2trX;t-§'62n][n—162n 2 X2trX;t11_'61n] (AG)

t=1
= / X3, X377 / X3, X7,)
Set iy = n~1/28571(1, —=61)T = (1,-637267)T. (A6) implies that
fir = ( 1 ! ) = (A7)
’ _[fo X;TX;I]_I[fo X;.,.Xl-,-] e
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A.4 Convergence to the Stochastic Integral Process

Under our assumptions we have weak convergence to the stochastic integral

- Z StuIH = / B dBT + TA, (A8)
0
where

n—ocon

A= lim =Y E(Swl,,),
t=1

as shown by Hansen (1992b, Theorem 4.1). Note that AX; = (u/, 0)T. Thus

[nr] nT]
6nZIXtAXJ;16n = 07126, Xeudy, 0] - (A9)
t= t=1
T T Au
=[] XdB' + 1 ol 0]
0

=/ XdXT + 1A
0

Auo
r= (% 0):

(Note that dX = (dBT, d1) = (dBT, 0)).

where

Partition
1 m+1

A = 1 Air Ag
m+1 \A21 A2

A
Az, = (A21Az3), and A = [Alz]-
22

and set

We can now see that

Son 3 Xoer AX 160 = 620 ) X2DX [y 16n (A10)

t=1 t=[nr]
1
= / Xor dXT + (1= 7)A2.
0

(A9) and (A10) together yield

n 1 A )
&Y XPAXL 6 = / XrdX' + [ ] All
2 XX : (1-)As. (411)
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The process X3¢y = Xo:0¢r has differences
AXyr = Xotptr — Xot—10t—1r = th—lA(Ptr + AXzﬂPtr (A12)

where
A‘Ptr = Ptr — Pt—-17 = {t = [nT]}

To derive the large sample counterpart we need to define the differential dy,. Since
@-(r) is a step function with a jump at 7, dp, is naturally defined as the dirac function

with the property that

b
/ fdpr = li%nf(z), if a < 7 <b,

for all functions f(-) with left-limits. Note that ¢, dp, = 0 and X, dp, = 0, since the
left-limit of ¢, at 7 is 0.
We can define the differential dX,, by

dXsr = d(Xapr) = ordXs = Xa dipr. (A13)
We have the relationships
/0 "X ax] = /0 "X, dXT + /0 'XXT dp, = /0 "X, dXT + X(0)Xa(r)T, (A14)
and
1 1 1 1
/0 Xor dX5, = [ XarprdX] + /0 XorX] dpr = [ XardX].  (A19)
Using (A12),
XeDXgrp1r = XeXgApeg1r + XeAXJ 100410
s0

b0 Y XeDXJi1:62n = 60 Y XeXgApesi1rbon + 6n Y XeAXzi1100417620(A16)
t=1 t=1 t=1

= 6X(nr)-1Xqgme-102n + 80 Y XeAXy 162

t=[n7]-1

1
— X(1)Xa(r)T = / X, dXT = (1—1)As
0
1
= / XdX, = (1-7)A2
0
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by (A14).
Using (A12) and the facts @;rApir1r = 0 and @er@i41r = @er, we have

X2t1'A-X21;+1,- = X2tX2-I;‘Ptr(Pt+lr + X2tAX2-l;+1(Ptr(Pt+lr
= X2tAX gy 10tr-

Therefore

San Y Xotr DX gpq1762m = S2n Y X2eAX 4 162m, (A17)

t=1 t=[nr]

1
s / Xor dX;- + (1 —T)Azz,
0
1
/ Xor dXy + (1 —7)Ags.
0

by (A15). Putting (A16) and (A17) together we obtain

5 Z * AXS, = / X ax] + [(1 B T)A‘Z] (A18)
2t+lr 2n 0 T 27 (1 _ T)Azz .
Setting dX:T = (dX 7, dX;.)7, and combining (A11) with (A18) we obtain our goal
1
8% ZX*TAx;fl,s* = / X:dX:T + A, (A19)
0
where
A = ( A (1 - T)A_2 )
(1 —_ T)Az. (1 bt T)Azg )
A.5 Serial Correlation Coefficient Estimate

Note that &, = +/n#} 65X}, so using (A5) and (A7)
1
'22% = AT~ ZX* Xy 6nie = nf/ XXy, = / Xr2, (A20)
0
where

1
X2,) = w0 = Xin) = ([ %, X5T)1 | wxnrix.e, @
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is the stochastic process in (r, 7) obtained by projecting X{,(r) orthogonal to the process
X3.(r). Similarly using (A19),
n n
n1S e, = i 65 Y X AXE 6 (A22)
t=1 t=1

1
— ([ Xrax;T + Adn,

1
_ * * T
= /0 X,,’ dX,,, + 1, Arnr.
Therefore

R n~1 S éir A -
n(pr—1) = ngt_zl?_t:éz t+1 (A23)

tr

1
fo X7 dX:q + WIATTH
1
o X2
by the continuous mapping theorem (if fol X ,".‘; > 0 a.s., as we discuss shortly).

Partition B = (B;, B )" and

Q1 Qe
€= (921 922)’

in conformity with Sy. Define 0 = [Q11 — 01205, 221]*/2, and set

==

Wi(r) = o7 [B1 — 1295 Ba(r)]
Wa(r) = Q57 Ba(r),

so that Wy = BM(1) is independent of Wy = BM(Iy).

Note that X;, = B; and X2, = [B] (), 1, B (r)er(r), ¢-(r)] 7. Since (A21) defines
X, by projection, and B; is an element of X{,_; X7, can be equivalently written as the
process oW, projected orthogonal to X3,. Furthermore, the space spanned by X3, is the

same as that spanned by
War(r) = Wy (r), 1, Wy (r)er(r), po(r)]

We summarize this discussion by rewriting (A21) as
1 1
X2(r) = oW(r) = o) = [ W[ WarWI) Wl (429)
0 0
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Thus (A23) can be written as

fol W, dW, + 0'_277:-/\1-7]1-
Jo w2 '

n(pr — 1) = (A25)

This limit distribution is only well-defined if fol W2 > 0a.s.. The argument of
Phillips and Hansen (1990), Lemma A.2 carries over to the present case without important

modification.

Due to the presence of nuisance parameters in (A25), the uncorrected serial correlation
coefficient estimate will not itself be useful as a test statistic. The main contribution to

our theoretical derivation is the implication of (A25) that -

sup [n(pr — 1)| = Op(1). (A26)

A.6 Covariance Estimation

In Hansen (1992c, Theorem 1), it was shown under our assumptions that
o~ (3
D w3R0) —p A
=1

where

. 1 «
I'(y) = - E ue—jug .

t=1+j
We will need the stronger result
M .
Zw(—]\‘%)f‘,(j) —, TAy, (A27)
=1
uniformly in 7 € [0, 1], where
) p [r1l
I'(y) = - Z Ut—jUy
™ =1+j

It turns out that a slight modification of the proof in Hansen (1992c) yields (A27). We

provide a sketch of this modification. Theorem 1 in Hansen (1992¢) was due to uniformly
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bounding a moment of the centered estimators |I'+(j )—ETL.(5)|, which was accomplished by
appealing to an inequality in Hansen (1991, Lemma 2). The latter inequality is actually
a maximal inequality, allowing the centered estimators |['(j) — EI(j)| to be similarly
bounded. The rest of the argument carries over and (A27) follows.
It follows directly from (A27) that
iw(%)an Y AX AX[6n —, A (A28)
t

—1

Using (A12),

Zw(—-)az,, E AXgijr AX[ 6,

=1
J T
= Zw(ﬁ)aznZ[xw_l_,-Asot_,-r + AXaejpi—jr ] AX{ bn (A29)
y=1 t
M .
= Y w(3)6mX AXT ., 6
= N/ O 2AnT]-15 A nr]+5%0
j—l
+Zw(—)52,. Z AXz jAX, b
j=1 t=[nr]+j

——)I, (1 b T)Az,,

uniformly in 7, since

|Zw(—)52nX2[m-] 1AX[,,T]+J5 | < sup |52nX2[m.]|n sup |Zut+1|

j=1 o<t =1
< Oy p 1> e
1<t<n j=1

OP(1)7

the final equality due to the following inequality for a-mixing processes (Hansen, 1991,
Corollary 3):

B[ sup lzumnz = o(M).

1<t<
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Similarly, ,

M .

Zw(ﬁ)azzAxt_,-Ax;azn —s, (1 = 7)As, (A30)
j=1 t

uniformly in 7. Finally using (A12),

M .
J
) :w(ﬂ)az,, §t AXi—jrDXgy.62n (A31)

i=1

NI

w(‘—)52n Z[X%—JTA‘Pt-Jf + AX%—J‘Pt—JT][Xn 178¢r + Ath(Ptr]&%
=1

M
=Y (-—)52,, Z AXp1—jAXJb2n + 0p(1) -

Jj=1 t=[nt]+j
—p (1 - T)A22

uniformly in 7. (A28)-(A31) yield

Zw(—)&*ZAX L AXITE —p A (A32)
Jj=1

uniformly in 7.
A7. Bias Correction
The Phillips’ statistics are constructed using the statistic \r. We are now in a position

to give its limiting distribution. First note that since &, = /n yerXy.,

Zw(——)Aet_,,Ae" (A33)

j=1
= i, Zw(—)a* ZAXt_,rAX:;T 62iis
=1
= Jnf r Ay
by (A32) and (AT7).

Now note that ¢y = Aéyr — (p — 1)é¢—1r , SO

Izw( )= ZAet—Jr[Aetr — Oer]|
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M .
_ J\1 Ao n
= |;w('ﬁ); Zt:Aet—Jret—lr(P - 1)
X1
< Z ;ZAét—jrét—lfl Iﬁr - 1|
=1 t
M 1

- —_ A“_. “_ n
~ %aﬁlnzt: éu—jrée-1| supnlp,

IA

INA

% 0,(1)
= Op(l)

<

.._1|

M _, 4211/2f,, —2 ~211/2
ﬁ[n Z:Aet] / [n Xt:et] / Op(1)

where we have used (A26), Holder’s inequality, and the assumption that % — 0. Com-

bined with (A33), it follows that

M .
1 A
; w(ﬁ); Xt: Aet_j,- Vtr = T]:-Arﬂr.

Similarly, we can replace Aé;—;r with 7;_;,, and we conclude that

M .
% 1 A .
Ar = _S_ w(ﬁ);g Vi—jrVtr — 7711-A1'77r-
t

!
A.8 Z, Process

From (A20),(A22), and (A34) we obtain
n~1 z;;l étrAét+1r - 3\1'
n=2 Z?:l é%‘r
R . 1
Jo X7, dX2, _ Jo W dW,-.
DA &

Zo(1) =

==

A.9 Long-Run Variance Estimate

(A34)

(A35)

We can define a matrix 2, as we defined A,, but using the matrix € instead of A.

Writing this out explicitly,

Qu 912 0 (1 - T)ng
Qzl 922 0 (1 - T)sz

Q = 0 0 0 0
(1 - T)Qzl (1 - T)sz 0 (1 - T)sz

0 0 0 0
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We can factor this matrix as

Q, = Q:D-,-Qe
where
1 0 0 0 0
0 In 0 (1=7)m O
Dr=10 0 0 0 0
0 A=7)m 0 (1—7)Im O
0 0 0 0 0
and
o 0 0 0 0
Q0% QM2 0 0 0
Q. = 0 0 1 0 0
0 0 o0 Qo -
0 0 0 0 1
A straightforward extension of (A34) is
~2 T _ T
6: = 0, Qnr = (Renr) Dr(Renyr). (A36)
Note that
( | )
Nr = -
—Uo X5 X317y X3 oW1 + X537 [P="]}]
( | )
- 1 ve vaTi1—1rr1 -1 )
~[fy X5 X317y X3,0Wn] — [P
Thus

o 0 1
Qer’"’ = Q—1/2921 1 ' Ti—11r1 Q:l/%q
[ 22 0 ] Im+2 _[fo W2TW21-] [fo WZTUWI] - [ 22 0 21]

1
B (—[fo‘wszzt]-ltf;szwll)— )

say. Thus we can write ] Q.1 = 02&] Dk, and reexpress (A36) as

6> = 0o’kID.k, (A37)
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Zy Process

From (A20),(A35), and (A37), we obtain

Zu(r) = Zalr)P = b ‘3"1‘/2 (438)

1.

Jixz dxz, [ X

T
fo Xz [azchD rKr
_ Jo Wr dW,
[fy W2H/2[kT D e, 12

]1/2

A.12 Proof of Theorem 2

Theorem 2 follows from (A35), (A38), (A39), and the continuous mapping theorem.

The supremum mapping is indeed continuous since all the limit processes are a.s. contin-

uous.
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Table 1A: Asymptotic Critical Values m = 1 (One Regressor)

Level .01 .025 .05 .10 975
ADF*, Z}

C -5.13 -4.83 -4.61 -4.34 -2.25
(.02) (-01) (.01) (.01) (.01)

C/T -5.45 -5.21 -4.99 -4.72 -2.72
(-03) (.02) (.01) (.01) (.02)

C/S -5.47 -5.28 -4.95 -4.68 -2.55
(.04) (.01) (.01) (.01) (.01)

Za
C -50.07 -45.01 -40.48 -36.19 -10.63
(-29) (.34) (.21) (-18) (.09)
C/T -57.28 -52.09 -47.96 -43.22 -15.90
(.33) (.34) (-23) (.24) (.14)
Cc/S -57.17 -51.32 -47.04 -41.85 -13.15
(.50) (-30) (.31) (-23) (.07)
NOTE:

These critical values are based on the response surface
Crt = g + 1 n~! + error,

where Crt is the critcal value obtained from 10,000 replications at sample size n =
50, 100, 150, 200, 250, and 300. The asymptotic critical value is the ordinary least squares
estimate (OLS) of 1. OLS standard errors of this estimate are in parentheses. ADF™*,
Z}, Z% are the test statistics defined in equations (3.1)- (3.3) respectively. The symbols
C, C/T, and C/S refer to models 2 -4 respectively.



Table 1B: Asymptotic Critical Values m = 2 (Two Regressors)

Level .01 .025 .05 .10 975
ADF*, Z¢

C -5.44 -5.16 -4.92 -4.69 -2.61
(.02) (-01) (.01) (.01) (.01)
C/T -5.80 -5.51 -5.29 -5.03 -3.01
(.02) (.01) (.01) (.01) (.01)
c/S -5.97 -5.73 -5.50 -5.23 -3.12
(.04) (.03) (.02) (.01) (.01)

@
C -57.01 -51.41 -46.98 -42.49 -14.27
(.41) (:17) (:27) (-24) (.08)
C/T -64.77 -58.57 -53.92 -48.94 -19.19
(.87) (-42) (-31) (:19) (:12)
Cc/S -68.21 -63.28 -58.33 -52.85 -19.72
(.79) (.65) (-59) (:43) (-14)

NOTE:

These critical values are based on the response surface

Crt =g + ¥ n~! + error,

where Crt is the critcal value obtained from 10,000 replications at sample size n =
50, 100, 150, 200, 250, and 300. The asymptotic critical value is the ordinary least squares
estimate (OLS) of ¢9. OLS standard errors of this estimate are in parentheses. ADF®,
Z¥, Z% are the test statistics defined in equations (3.1)- (3.3) respectively. The symbols
C, C/T, and C/S refer to models 2 -4 respectively.



Table 1C: Asymptotic Critical Values m = 3 (Three Regressors)

Level .01 .025 .05 .10 .975
ADF*, Z}

C -5.77 -5.50 -5.28 -5.02 -2.96
(.02) (.02) (.02) (.02) (.01)

C/T -6.05 -5.79 -5.57 -5.33 -3.33
(.03) (.02) (:01) (.01) (.01)

Cc/S -6.51 -6.23 -6.00 -5.75 -3.65
(.02) (.02) (.01) (.01) (.01)

Zy
C -63.64 -57.96 -53.58 -48.65 -18.20
(.27) (.21) (.23) (.20) (.11)
C/T -70.27 -64.26 -59.76 -54.94 -22.72
(.59) (.40) (.30) (.23) (.11)
Cc/S -80.15 -73.91 -68.94 -63.42 -26.64
(.58) (.61) (.53) (.43) (.06)
NOTE:

These critical values are based on the response surface
Crt =g + 91 n~ ! + error,

where Crt is the critcal value obtained from 10,000 replications at sample size n =
50, 100, 150, 200, 250, and 300. The asymptotic critical value is the ordinary least squares
estimate (OLS) of 1. OLS standard errors of this estimate are in parentheses. ADF™,
Z}, Z% are the test statistics defined in equations (3.1)- (3.3) respectively. The symbols
C, C/T, and C/S refer to models 2 -4 respectively.



Table 1D: Asymptotic Critical Values m = 4 (Four Regressors)

Level 01 025 05 10 975
ADF*, 2}

c 6.05 -5.80 5.56 5.31 -3.26
(.01) (.01) (.01) (.01) (.01)
C/T -6.36 6.07 5.83 5.59 -3.59
(.03) (.01) (.01) (.01) (.01)
c/s -6.92 -6.64 -6.41 6.17 412
(.03) (.01) (.01) (.00) (.01)

z:
c 70.18 -64.41 -59.40 5438 -22.04
(.54) (.31) (.28) (.24) (.07)
c/T 76.95 -70.56 65.44 6012 -26.46
(.96) (.61) (.49) (.29) (.12)
c/s -90.35 -84.00 -78.52 72.56  -33.69
(L1) (.79) (.71) (.60) (.28)

NOTE:

These critical values are based on the response surface
Crt = 1o + ¥ n~! + error,

where Crt is the critcal value obtained from 10,000 replications at sample size n =
50, 100, 150, 200, 250, and 300. The asymptotic critical value is the ordinary least squares
estimate (OLS) of 4. OLS standard errors of this estimate are in parentheses. ADF®,
Z}, Z* are the test statistics defined in equations (3.1)- (3.3) respectively. The symbols C,
C/T,C/S, and C/S/T refer to breaks in the constant (C), trend (T'), and slope coeffcient
(S) as defined in models 2 -5 respectively.



Table 2: Size Comparisons

yt=1+2$t+€t, €t = €¢—1 +‘l9t, 'l9t ~ NID(O,].)

Yyt =2zt +ne, Mt =7ne-1+w, we ~ NID(0,1)

n = 50 n = 100
ADF*
C 07 .06 )
C/T .09 .06
c/S .09 .06
Z
c 12 .08
C/T 14 10
c/S 12 .09
Zs
C .00 .03
C/T .00 .03
c/S .00 .03
ADF
c .03 .04
C/T .05 .04

NOTE: Rejection frequencies at the five percent level of significance using critical values
from Table 1 in 1000 replications. ADF*, Zf, Z* are the test statistics defined in equations
(3.1)- (3.3) respectively and ADF is the usual augmented Dickey Fuller statistic with 7 = 1.
C, C/T, and C/S refer to models 2-4 respectively and C and C/T for the usual ADF
refer to regressions with a constant and a constant and a trend. For ADF* and ADF the
lag length M is set on the basis of a t — test (see text).



Table 3: Power Comparisons

yt=1+2.'L‘t+€t, €¢ ~ NID(O,].),

Ye =Tt + M, M =Nt—1 +we, wy ~ NID(0,1)

n =50 n = 100
ADF*
C .96 1.0 )
C/T 91 1.0
c/S 95 1.0
Zi
C 99 1.0
C/T 97 1.0
c/S .99 1.0
Zg
C 78 1.0
C/T 37 1.0
c/S 53 1.0
ADF
C 95 1.0
C/T 91 99

NOTE: Rejection frequencies at the five percent level of significance using critical values
from Table 1 in 1000 replications. ADF*, Z¥, Z* are the test statistics defined in equations
(3.1)- (8.3) respectively and ADF is the usual augmented Dickey Fuller statistic with 7 = 1.
C, C/T, and C/S refer to models 2-4 respectively and C and C/T for the usual ADF
refer to regressions with a constant and a constant and a trend. For ADF* and ADF the
lag length M is set on the basis of a t — test (see text).



Table 4: Power Comparisons with Serial Correlated Errors

yt=1+22t+6t, 61-’—'.5 €t—1 +'l9t, 19t ~ NID(O,].)

ye =¢+ 1M, Nt =mM-1+w, we ~ NID(0,1)

n =50 n = 100
ADF*

C 44 .96 )
c/T .39 .92
C/S 39 94

Z

C Y4 .98
Cc/T .50 .96
Cc/S .50 97

Zg

C 12 .93
C/T .02 .80
c/S .03 .86
ADF

C .70 .99
C/T 45 .96

NOTE: Rejection frequencies at the five percent level of significance using critical values
from Table 1 in 1000 replications. ADF*, Zf, Z% are the test statistics defined in equations
(3.1)- (3.3) respectively and ADF is the usual augmented Dickey Fuller statistic with 7 = 1.
C, C/T, and C/S refer to models 2-4 respectively and C and C/T for the usual ADF
refer to regressions with a constant and a constant and a trend. For ADF* and ADF the
lag length M is set on the basis of a t — test (see text).



Table 5: Structural Break in the Intercept

=1,t<[rT
Ye =t + 2 + €, [at sl ]}

ar=4,t> [t T
€t = .561:_1 + 191, !9t ~ NID(O,].)

Yo =T¢+ Mty Mt =Net—1 +wi, we ~ NID(0,1)

n = 50 n = 100
T 25 50 .75 25 .50 .75
ADF*

C 39 43 .49 96 .97 .97
C/T 32 .39 .46 91 .93 .94
c/S 29 34 .40 92 .93 .91
z;

C 52 .54 5T 97 .98 .98
c/T 46 51 .58 94 .96 .97
c/S 43 45 .46 95 .95 .96
Zg

C 10 .10 .12 92 .92 .93
C/T 02 .02 .04 77 81 .83
c/S 03 .03 .02 .80 .80 .83
ADF

c 24 .18 .18 62 51 .52
C/T 23 .28 .33 68 .82 .83

NOTE: Rejection frequencies at the five percent level of significance using critical values
from Table 1 in 1000 replications. See Table 2 for a definition of the other symbols used.



Table 6: Structural Break in the Slope

0,=2,t<[trT
ye =14 6; z¢ + €, [t sl ]]

0t=4,t>[TT]

€ = .561_1 + 19;, 19t ~ NID(O,].)
Ye=Z¢+M, Mt =N—1 +wy, we ~ NID(0,1)

n =50 n =100
r 25 50 .75 25 50 .75
ADF*

C 19 28 .36 45 .54 .83
C/T 20 27 .38 39 .53 .77
c/S 34 41 .37 95 .94 .93
Z

C 33 .38 .49 53 .63 .88
C/T 33 .38 .49 49 64 .84
c/S 50 .49 .46 97 .96 .96
Za

C 06 .06 .10 37 45 .78
C/T 02 .02 .03 25 .36 .64
c/s 04 .03 .03 85 .82 .80
ADF

C 23 22 .40 38 40 .67
C/T 15 .20 .41 34 39 .74

NOTE: Rejection frequencies at the five percent level of significance using critical values
from Table 1 in 1000 replications. See Table 2 for a definition of the other symbols used.



Table 7: Structural Break in the Intercept and Slope

ar=1,0,=2,t<[rT]

= 6
Yt = ar + 0 z¢ + €, =2 0, =4,t>[rT)

€t = .56t_1 + 19;, !91 ~ NID(O,].)
Ye=2Te+ N0, Ne=m-1+w, we~ NID(0,1)

n = 50 n =100
T 25 .50 .75 25 .50 .75
ADF*

C 18 26 .34 46 .54 .82
C/T 17 25 .36 37 .52 .77
c/S 34 36 .34 95 .93 .93
Zi

C 31 .35 .48 56 .63 .90
C/T 30 .38 .48 50 .62 .85
c/s 48 4T 45 98 .96 .96
Za

C 06 .06 .09 39 46 .79
C/T 01 .01 .02 26 .37 .66
c/s 03 .02 .02 85 .82 .81
ADF

C 24 22 .43 42 40 .66
C/T 14 .19 .43 37 42 .74

NOTE: Rejection frequencies at the five percent level of significance using critical values
from Table 1 in 1000 replications. See Table 2 for a definition of the other symbols used.



Table 8: Estimating Break Point

n = 50 n = 100
T 25 50 .75 25 .50 .75

ADF*
c 55 .66 .66 49 .66 .71
(22) (.18) (.22) (.24) (.18) (.20)
C/T 55 .59 .59 50 .62 .65
(21) (.20) (.21) (.22) (.19) (.22)-
c/S 43 60 .66 32 .56 .72
(.19) (.14) (.19) (.13) (.10) (.15)

zr
C 49 .63 .61 45 .66 .70
(.23) (.58) (.24) (.23) (.18) (.21)
C/T 52 .58 .59 50 .63 .66
(.22) (.20) (.22) (.22) (.19) (.22)
c/S 40 57 .62 32 55 .71
(.18) (.15) (.21) (.13) (.10) (.16)

z
c 49 63 .61 46 .66 .70
(:23) (.20) (.22) (.23) (.18) (.21)
C/T 53 .59 .60 50 .63 .66
(21) (.20) (.22) (.22) (.19) (.22)
c/S 40 57 .52 32 .56 .71
(.18) (.15) (.20) . (.13) (.10) (.17)

NOTE: Average estimated break point and its standard error in parentheses. The results
are for the experiment described Table 6.



Table 9 Testing for Regime Shifts in U.S. Money Demand

In(m¢) — In(pt) = a + ’Ylln(yt) + vare + et

Annual Data 1901-1985 Quaterly Data 1960:1-1990:4
Test Stat Break Point Test Stat Break Point
ADF*

C -5.43** (.49) -3.73 (.48)
C/T -5.66** (.50) -4.63 (.85)
c/S -5.01 (.49) -5.70%* (.52)

Zi

C -5.33** (.50) -3.57 (-85)
C/T -5.85** (.49) -4.66 (.85)
Cc/S -5.38* (:49) -5.82** (-52)
Za

C -46.39* (.50) -22.94 (-85)
C/T -52.52* (:49) -36.38 (-85)
c/S -44.36 (.50) -53.57* (.52)
ADF

c -4.55* (-) -2.03 )
C/T -4.37* ) -1.89 (-)

NOTE: These are the test statistics where an * and ** indicates significance at the ten
and five percent respectively. Beside these in parentheses are the estimated break points.
The annual data are from Lucas (1988) and m is M1, p is the implicit price deflator, y is
the real net national product and r is the six-month commercial paper rate. The quarterly
data are form the CITIBASE tape; the series used are GMPY, FXGM3, GMPY82, FM1,
GNNP, GNNP82 and are seasonally adjusted.



Table 10 Parameter Estimates in U.S. Money Demand using ADF*

In(m¢) — In(p) = a + Bt + +11in(ye) + vore + et

& A& B
Annual Data
Model 1 1.85 - -
Model 2(C) 1.73 -12 -
Model 3(C/T) 3.04 -.180 .012

Model 4(C/S) 1.81 5.40 -

Quarterly Data
Model 1 3.22 - -
Model 2(C) 4.86 17 -
Model 3(C/T) 1.5 20 -.003
Model 4 (C/S) 4.86 .20 -

g

.96

.98

.59

98

.40

18

.63

18

An

-1.03

25

-.08

-.08

-.07

-.09

-.022

-.01

-.008

-.01

A

.08

-.003

NOTE: These are the ordinary least squares estimates without any bias corrections. The
annual data are from Lucas (1988) and m is M1, p is the implicit price deflator, y is the
real net national product and r is the six-month commercial paper rate. The quarterly
data are form the CITIBASE tape; the series used are GMPY, FXGM3, GMPY82, FM1,

GNNP, GNNP82 and are seasonally adjusted.
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Figure 1: Estimating Break Points
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Figure 2: Regime Shifts with ADF*
U.S. Annual Money Demand (1901-1985)
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