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ON MULTIPLE-COMPARISONSPROCEDURES

by

W. J. Conover
Ronald L. Iman

ABSTRACT

Some of the more popular multiple-compari-
sons procedures are discussed and compared. Some
new nonparametric methods are introduced. One
procedure is an analog to the Fisher’s least sig-
nificant difference method for the completely
randomized design. Some simulation studies indicate
this procedure is a reasonable nonparametric method
to use. A summary description is given for other
nonparametric methods, which may be used with the
completely randomized or randomized blocks designs.

I. INTRODUCTION

When two treatments are being compared, the situation is fairly simple.

Either the two treatments are considered equivalent or they are not. The

traditional theory of statistical hypothesis testing corresponds nicely to the

experimenter’sobjectives. The Type I error and Type II error, with corres-

ponding a and f3,are easy to interpret.

When more than two treatments are being compared simultaneously, the situa-

tion is no longer simple. The experimenter is usually not as interested in

knowing whether any differences among the treatments exist as in knowing which

treatments are different. The traditional theory of hypothesis testing no

longer corresponds so nicely to the experimenter’s objectives. The theorist

is often overly concerned with protecting against Type I error, so the resulting

procedures have relatively little power. On the other hand, repeated use of

the two-sample procedures, while rich in power, tends to boost the experimentwise

u level to unacceptable heights. Although convincing arguments may be made to
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justify either of the two extreme procedures, some sort of “middle ground” pro-

cedure has more practical appeal to most experimenters and consulting statisti-

cians.

A procedure that has some popular appeal and falls between the two extremes

mentioned above consists of two stages. The first stage is an overall test of

the hypothesis “no treatment differencesI!at an acceptable a level, say a = 0.05.

If the hypothesis is accepted, no further comparisons are made. In this way an

overall experimentwisea level is maintained at or below the specified level.

If the null hypothesis is rejected, then some acceptable two-sample proce-

dure is applied to all pairs of treatments which may be of interest, or to any

other contrasts of interest. The nominal a level used in this second-stage

procedure has no real probabilistic meaning, since the tests are conditional

on the result of the first stage, but the method preserves most of the desired

power characteristicof the two-sample procedure.

The purpose of this report is to discuss and compare some procedures that

fall into the various categories above. In the next section some parametric

multiple-comparisonsprocedures are discussed. Section III is concerned with

some nonparametric procedures. A nonparametric multiple-comparisonsprocedure

based on the rank transform, apparently not previously considered in the liter-

ature, is introduced in Section IV, along with some justification for its use.

A collection of useful equations is given in Section V.

A test is usually called parametric or nonparametric, depending on whether

the a level of the test is or is not a function of untested assumptions con-

cerning the form of the distribution function. Therefore, the two-stage proce-

dures are classified as parametric or nonparametric, depending on whether the

first-stage test is parametric or nonparametric. Since the a level of the se-

cond-stage test is usually not known, it is no longer a hypothesis test in the

usual sense but rather merely a convenient yardstick for separating some treat-

ments from others. Although this seemingly opens the door to all types of pro-

cedures for the second stage, there are intuitive reasons for selecting a se-

cond-stage procedure that agrees “in spirit” with the philosophy behind the

choice for a first-stage procedure. That is, a second-stage procedure that is

sensitive to the same types of differences as the first-stage procedure will

tend to produce results that are more in agreement with the results

first-stage procedure. For this reason, the second-stage procedure

2
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a two-sample version of the first-stage procedure.

II. PARAMETRIC METHODS

Virtually all parametric multiple-comparisonsprocedures assume that some

sort of linear model exists with a normally distributed error term. Let

lj,..., IJk denote the means of the treatments of interest, and let y ~ be~,..., ~

the correspondingmaximum likelihood estimates of those means. Further, let

MSE denote the denominator of the F statistic usually used in the analysis of

variance test of the hypothesis that all k means are equal. Then, (MSE)/ni is

an estimator of the variance of y+, where n: is the number of observations asso-
J.

ciated with %i.

Some of the more popular parametric

notation of Carmer and Swanson.l

LSD (Least Significant Difference).

be different if the inequality

L

procedures are listed below, in the

Consider populations i and j to

is satisfied, where X is obtained from t-tables with the same degrees
cl/2

of freedom as MSE. The a level applies to each individual comparison.

FSD (Fisher’sSignificant Difference). The LSD test is used here, but

only if a preliminary F test has rejected the null hypothesis of no

differences.

TSD (TukeyrsSignificant Difference). This is the same as LSD except

z
a/2

is replaced by a larger value qa, which may be obtained from tables

of the studentized range. No preliminary test is necessary. The a

level applies to all pairwise comparisons simultaneously.

SSD (Scheffe’sSignificant Difference). This is the same as LSD and TSD

except Xa12 or qa is replaced by a still larger critical value, which

equals the square root of the critical value of the F statistic used in

the preliminary test in FSD. No preliminary test is applied, however.

The a level applies to all possible contrasts of the p’s simultaneously.
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BET (Bayes’ Exact Test). The same general procedure is used again

here, except that Za,2 is replaced by a critical value that is a

function of the F statistic used in FSD. In particular, if F

is small (~ndicatinghomogeneous sample means), the multiple

comparisons are still made but with a relatively large critical

value, while if F is large (indicatingheterogeneous sample means]>

the critical value is smaller and differences are more likely to be

declared significant. Thus, BET provides an interesting compromise

between the LSD and FSD methods. The interesting question of

interpreting the a level is sidestepped> however} and replaced with

a measure of “minimum average risk.”

Two other procedures, SNK (Student-Newman-Keuls)and MRT (Multiple-Range

Test),resembleLSD except the critical value Za,2 is replaced by various criti-

cal values, depending on how many of the ~’s are intermediate in value to the

xi and ~j being considered. These critical values lie somewhere between Za,2

and qa, with the MRT critical values being, in general, less than the correspon-

ding SNK values.

Some of these procedures are easy to compare directly. For example, MRT

will tend to have more pairs declared significant than will SNK because of the

inequality of their critical values, and both will have more significant differ-

ences noted than TSD or SSD. Comparisons with FSD and BET are not as clear,

however. An extensive Monte Carlo study of the relative merits of the above

procedures resulted in the following conclusions by Carmer and Swanson.l

1)

2)

3)

If one agrees with the notion that an experimenter should want

to use a procedure capable of detecting a real difference when

it exists, then one should not use TSD, SSD, or SNK.

The LSD procedure appears to offer too little protection against

a Type I error, and offers little advantage over FSD, BET, and

MRT in detecting real differences when they exist, and, therefore,

should not be used.

In agreement with Duncan, who says that it makes more sense for

a critical value to depend on F than on the number of samples,

BET should be preferred over his MRT procedure.

&
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4) Although FSD and

other procedures

between the two.

The interested reader is

a presentation of the BET and

BET appear to be more practical than the

studied, there is little basis for choosing

referred to Waller2 and Wailer and Duncan3 for

some exact tables.

III. NONPARAMETRIC METHODS

Three of the more popular nonparametric multiple-comparisonsprocedures

were compared by Lin and Haseman.4 These methods apply only to the completely

randomized design. The first procedurelis a nonparametric analog to the FSD

procedure and isrecommended by Conover.5 The first stage is a Kruskal-Wallis

test for overall differences. If the test is significant, pairwise comparisons

are made by using the Mann-Whitney test, which involves reranking the observa-

tions for each comparison.

The second procedure is due to Nemenyi6 but is usually attributed to

Dunn.7 The same overall ranks that are used to replace the observations in the

Kruskal-Wallistest are used here also, but no preliminary test is applied.

Treatments i and j are considered different if the inequality

is satisfied, where ha is the critical value from a Kruskal-Wallis test, MST

refers to the “mean square total”

MST =
Total sum of squares

Total degrees of freedom

of the ranks, which equals NIN+l]/12 if there are no ties, and n. and n. are

the respective sample sizes. The a level covers all possible co;trasts’in the

spirit of Scheffe’s (SSD) procedure. Actually, Dunn suggests using, instead

of ~, the l-a/(2p) quantile from the standard normal distribution, where p is

the total number of contrasts to be considered. Thus, for all pairwise compari-

sons, p equals (~), which may be quite large for a moderate number of samples, k.

The third procedure was proposed independently by Steela and Dwass.g

in the Nemenyi-Dunn procedure, no preliminary overall test is performed.

each pair of samples being compared is ranked between themselves, and the

As

Rather,

larger
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of the two rank sums is compared

an overall level of significance

the

and

and

IV.

spirit of the TSD procedure.

After extensive Monte Carlo

against a critical value, which ensures one of

a applicable to all pairwise comparisons, in

simulations under both the null hypothesis

alternatives involving normal, uniform, and exponential distributions, Lin

Haseman4 reach the following conclusions.

1) The Nemenyi-Dunn and Steel-Dwass procedures seem tounduly

stress protection against Type I errors at the expense of

power to detect real differences when they exist.

2) The ICruskal-Wallis-Mann-Whitneytest seems to provide a better

balance between Type I and Type II errors, in agreement with

the corresponding results found by Carmer and Swanson for the

FSD procedure.

THE RANK TRANSFORM PROCEDURE

The Rank Transform (RT) procedure consists of ranking the observations

from the smallest to largest and then applying a reasonable parametric proce-

dure to the ranks. For the completely randomized design the rank transform

procedure analogous to the FSD method has been compared with FSD using Monte

Carlo simulation. Of course, the F test on the ranks is equivalent to the

Kruskal-Wallistest, so the only difference between this rank transform proce-

dure and the Kruskal-Wallis-Mann-Whitneytest reported above is in the multi-

ple-comparisons procedure following significance in the Kruskal-Wallistest.

This procedure is much simpler than the repeated use of the Mann-Whitney test

because the original ranks are used throughout the analysis instead of re-

ranking for each pairwise comparison. In particular, if there are no ties the

LSD analog indicates populations i and j to be significantly different if the

inequality

is satisfied, where ~i and ~j are the average ranks for the corresponding sam-

ples, ~&/2 is the same value used in LSD and FSD, N is the sum of all the sam-

ple sizes, and T is the Kruskal-Wallis statistic. Although this procedure is

simply the rank transform counterpart to the”FSD procedure, one can readily see

6
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that the larger the value of T, the easier it is to obtain significant differ-

ences, much like the BET procedure. Also, one can see the difference between this

method and the Nemenyi-Dunn procedure. Where the Nemenyi-Dunn procedure uses

“mean square total” on the right side of the inequality, this method uses “mean?
square error,“ which may be larger or smaller than mean square total, depending

> on whether T is smaller or larger than its mean k-1. Of course, the only time

the above inequality will be used is when T is significant, in which case T

will be much larger than k-1.

This RT procedure was compared with the FSD procedure under the null hypo-

thesis, with “medium” nonnull conditions, and with “strong” nonnull effects,

as detailed in Table I. One thousand simulations were made for each of the

three situations combined with four populations: normal, lognormal, exponential,

and Cauchy. The Kruskal-Wallis test used a = 0.05 in all cases. The second-

stage results for u = 0.05 and a = 0.10 are given.

TABLE I

THE TWELVE CONDITIONS UNDER WHICH THE RT AND FSD PROCEDURES WERE COMPARED

Population
(Sample Size)

1(n1=7)

a) No effects
1.

2.

3.

4.
b) Medium effects

5.

6.

7.

8.
c) Strong effects

9.

11.

N(O,l)a

-ln Ub

exp{N(O,l)]

C(o,l)c

N(O,l)

-&z U

exp{N(O,l)}

C(o,l)

N(O,l)

-h U

exp{N(O,l)}

2(n2=8)

N(O,l)

-Xn U

exp{N(O,l)}

C(o,l)

N(O,l)

-ln U

exp{N(O,l)}

C(o,l)

N(O,l)

-l?nU

exp{N(O,l)}
.’

12. C(o,l) C(o,l)
a N(P,02) = normal random variable.
b U = uniform random variable on [0,1)0

3(n3=9) 4(n4=10)

N(O,l)

-In U

exp{N(O,l)]

C(o,l)

N(.5,1.5)

-$.in U

exp{N(.5,1)}

C(.5,1.5)

N(l,l.5)

-2.l?nU

exp{N(l,l)]

C(l,l.5)

N(O,l)

-ln U

exp{N(O,l)}

C(o,l)

N(1,2)

exp{N(.84,1)}

C(1,2)

N(2,2)

-3Zn U

exp{N(2,1)}

C(2,2)

. . .
c C(a,b) = a + b tan (m(U-.S))= Cauchy random variable with a=median,b=scale factor.
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Table II shows the proportion of times the null hypothesis was rejected

using the F test and using the Kruskal-Wallistest. With normal populations

these results agree with the theory which says the Kruskal-Wallistest is not

as powerful as the F test. For the other three distributions the Kruskal-Wallis

test appears to have as much or more power than the F test, although the hetero-

geneity of variance present in the lognormal situation probably causes the lack

of power in both tests.

When the null hypothesis was rejected, multiple comparisons were made with

the FSD and RT procedures, as reported in Table III. The comparisonof error

rates and power rates were computed. It is interesting to note that in the

case with normal populations, the power of the RT procedure matches the power

of the FSD method even though the Kruskal-Wallistest rejected the null hypo-

thesis fewer times than the F test, and therefore the RT method was applied

fewer times than the FSD method. A larger number of Type I errors also accom-

panies the RT method, although the proportion of Type I errors is still well

below the nominal

Table III, the RT

the FSD procedure

(Type I error) as

value 0.05. For the nonnormal distributions reported in

method declared more population pairs to be different than

did, in

well as

THE PROPORTION OF TIMES

HYPOTHESIS

Normal F:
K-W:

Exponential F:
K-W:

Lognormal F:
K-W:“

Cauchy F:
K-W:

situations where the populations were not different

when they were.

TABLE II

THE F TEST AND THE KRUSKAL-WALLISTEST REJECTED TIiE

OF NO OVERALL DIFFERENCES AT a = 0.05

0.036
0.039

0.049
0.055

0.040
0.064

0.028
0.053

Medium

0.339
0.322

0.106
0.119

0.038
0.062

0.024
0.106

0.910
0.896

0.391
0.423

0.034
0.048

0.057
0.248

.

.
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TABLE III

THE PROPORTION OF PAIRWISE COMPARISONS WHICH WERE DECLARED SIGNIFICANT

II. Some differences were present

I. No differences were in the experiment

present in the (a) among identi- (b) among pairs with
experiment cal pairs differences

First stage a = 0.05; Second stage a = 0.05.

Normal FSD 0.015
RT 0.016

Exponential FSD 0.021
RT 0.022

Lognormal FSD 0.018
RT 0.027

Cauchy FSD 0.011
RT 0.022

First stage a = 0.05; Second stage a = 0.10.

Normal FSD 0.018
RT 0.019

Exponential FSD 0.025
RT 0.027

Lognormal FSD 0.020
RT 0.033

Cauchy FSD 0.013
RT 0.027

0.016
0.033

0.003
0.023

0.014
0.022

0.005
0.019

0.041
0.063

0.005
0.044

0.018
0.025

0.006
0.033

0.379
0.380

0.131
0.139

0.016
0.023

0.019
0.087

0.438
0.434

0.148
0.166

0.018
0.028

0.022
0.106

Although this simulation study is not extensive, it provides some support

for using the RT method as a multiple-comparisonsprocedure to follow the

Kruskal-Wallistest. Because no reranking is necessary, the RT method is

easier to use than the Mann-Whitney method. Perhaps further work comparing

the power of the two procedures will be done.
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v. A SUMMARY OF RECOMMENDED NONPARAMETRIC MULTIPLE-COMPARISONSPROCEDURES

The rank transform procedure described in the previous section may be used

in any experimental situation for which a parametric procedure exists. Once

the initial rank transformation is performed, with average ranks used in case

of ties, the usual parametric procedures may be applied to the ranks, or to

scores such as normal scores used in place of ranks if desired. Problems with

ties are handled automatically and are no longer problems. No assumptions of

continuity need be made. Evidence from past research indicates that these pro-

cedures are powerful and robust.

The primary disadvantage of the rank transform procedure is that, except

in the completely randomized design, these procedures are not commonly in use

for analysis of data from experimental designs. The Friedman test is commonly

used for the randomized blocks design, so a multiple-comparisonsprocedure to

follow the Friedman test, which has characteristics similar to the Friedman

test, is needed. Similarly, a procedure is needed to follow the Durbin test

for balanced incomplete block designs. Such procedures are being planned to

appear in the forthcoming revision of Conover.5 Equations for these proce-

dures are given in this section for the interested reader. They are merely the

rank analogs to the corresponding FSD procedure.

A. Kruskal-WallisTest (CompletelyRandomized Design)

In the previous section no indication of how to handle ties was given,

except to recommend assigning average ranks and using FSD or LSD formulas on

the ranks. In case this explanation is not sufficient, more explicit instruc-

tions will now be given.

Consider the following notation.

x = the i
th .th

ij observation in the j sample,

i=l>...9 - j=l,...,k.
‘j’

R = the rank (or average rank in case of ties) of X.., from 1 toij lJ
k

N= Xn.,
j=l J

R. .th= the sum of the ranks assigned to the j sample.
J

S2 +

10

z
all R’ -N(N;1)2

ij
ranks

)
.

P

.
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(k
T=~

)

N(N+1)2
R?/n. - ~ .

S2 jjl J J

If there are no ties S2 reduces to N(N+l)/12. If T, the Kruskal-Wallis statis-

tic exceeds the l-a quantile of a chi-square distribution with k-1 degrees

of freedom, multiple comparisons are made using the inequality

for all pairs of samples, where Z1_a,2 is the l-q/2 quantile

tion with N-k degrees of freedon.

from a“~ distribu-

As an alternative to the above procedure the ranks R.. may be treated as
1]

data in the FSD procedure. The results of these two procedures are equivalent.

B. Van der Waerden Test (CompletelyRandomized Design)

If normal scores are used instead of ranks in the above analysis, the equa-

tions are as follows.
.

A = @-J(Rij/(N+l)),where O(x) is the standard normal distributionij
function.

A. .th= the sum of the scores assigned to the ]
J

sample.

~ 1
‘1 ‘m

z A*
all ij “

scores

k

‘1
‘* “: ‘~’nj”]-1

Multiple comparisons are based on the inequality

only if the statistic T1 exceeds the l-a quantile of a chi-square distribution

with k-1 degrees of freedom.
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As an alternative to the above procedure, the scores Aij may be treated

as data in the FSD procedure. The results of these two procedures are equiva-

1ent.

c. Friedman Test (RandomizedComplete Block Design)

The most popular nonparametric test for the randomized

is the Friedman test, which is presented for the case with

per cell.

x=
ijn

R=
ijn

R. =
J

s; =

‘2 =

complete block design

several observations

the nth observation in block i, treatment j, i=l,...,b;

j=l,....k. n=l,...,m.

the rank (or average rank in case of ties) of X.. among
l]n

those observations in block i only; from 1 to km.

the sum of all ranks assigned to treatment j.

((m;-l) ~~~R2
ijn

)

- mkb(mk+l)2/4) .
ranks

1;
~

(Rj - bm(mk+l)/2)2 .

-1 j=l
L

If the Friedman test statistic T2 exceeds the 1-u quantile of a chi-square dis-

tribution with k-1 degrees of freedom, multiple comparisons are based on the

inequality

2 2b(mk-1) % ‘2 )%
[Rj-Ri[ ‘z~_a/2 (s2 mbk-k-b+l) ‘1- b(mk-1)

for all pairs of treatments i and j. If there are no ties s; reduces to

kbm2(mk+l)/12. The number of degrees of freedom is mbk-k-b+l.

As an alternative to the above procedure, the ranks R.. may be treatedl]n
as data in an ordinary two-way analysis of variance, without interaction. The

resulting F test for treatments is equivalent to the Friedman test. A signifi-

cant value of F is then followed by the LSD procedure, still treating the ranks

F

\

as data. These two procedures are equivalent.

12



D. Durbin Test (Balanced Incomplete Block Design)

The usual nonparametric test for the balanced incomplete block design and

the appropriate multiple-comparisonsprocedure are as follows.

t = the

k = the

b = the

r = the

x = the
ij

number of treatments to be examined.

number of experimental units per block (k<t).

total number of blocks.

number of times each treatment

result of treatment j in block

appears in block i.

R = the rank of X.. within
ij 1]

R. = the sum of the r ranks
J

12(t-1) t

‘3 = rt(k-l)(k+l) j~l
[Rj

If T3 exceeds the l-a quantile of

appears (r<b).

i, if treatment

block i only, from 1 to k.

assigned to treatment j; j=l,....t.

- r(k+l) 2
2 1.

a chi-square distribution with t-1 degrees of

freedom, make pairwise comparisons using the inequality

\ Rj-Ril

where ~1-a/2
is obtained

The above procedure

( )r(k+l)(k-l)(bk(t-1)-tT3 %
>X

l-a/2 6(t-l)(bk-t-b+l) 9

from Z tables with bk-t-b+l degrees of freedom.

is equivalent to the usual parametric analysis on the

ranks if there are no ties. In case of extensive ties the above chi-square

approximationmay be inaccurate, and the parametric analysis on the ranks R..lJ

should be used instead, because of its built-in correction for ties.
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